核探针法测定镁溶解后元素富集

N. Birbilis, T. Cain, J. Laird, X. Xia, J. Scully, A. Hughes
{"title":"核探针法测定镁溶解后元素富集","authors":"N. Birbilis, T. Cain, J. Laird, X. Xia, J. Scully, A. Hughes","doi":"10.1149/2.0081510EEL","DOIUrl":null,"url":null,"abstract":"With significant increases in the production and utility of magnesium (Mg) in the past decade, Mg-alloys remain an attractive material for weight reduction in several industries, 1 in addition to substantial exploration as electrode materials in primary and secondary batteries. 2‐3 In such cases, the unambiguous determination of factors that play a role in corrosion/electrochemistry of Mg are of critical importance. The influence of impurities on the corrosion of Mg has been well documented since the early 20 th century, 4 with tolerance limits for a number of elements in Mg proposed. 5 In particular, the influence of deliberate alloying additions of low levels of transition metals (iron, manganeseandzirconium)oncorrosionofMghavebeendocumented by systematic studies. 6 Furthermore, the comparison of the electrochemistry of pure Mg specimens with low (at commercial levels of ∼40 ppmw) and ultra low levels (≤ 1 ppmw) of Fe were also recently presented. 7 Such studies add to the evidence that impurity elements, nominally of low solubility, 8‐10 influence the corrosion electrochemistry of Mg. In spite of this, at least two key aspects with respect to the in-service performance of Mg remain under researched. The first of these includes the detection and analysis of impurity elements on the Mg surface, and the study of possible enrichment of impurity elements on Mg during dissolution; both aspects are worthy of elaboration. Regarding the analysis of impurity elements on Mg surfaces, this is a particularly challenging task for the common methods nominally used in corrosion related works. Nominally, impurity concentrations are in the parts per million range. For example, commercial purity Mg will nominally contain < 100 ppmw Fe, which is below < 0.01% on the basis of weight %, and even lower on the basis of atom %. The analysis of such low levels of Fe with accuracy is not readily possible by methods such as X-ray photoelectron spectroscopy or Auger electron spectroscopy, which require concentrations approaching 1% (which is ∼100 times larger than the typical Fe impurity content) for accurate detection. Similarly, the signal to noise ratio, and large interaction volume, from energy dispersive X-ray spectroscopy are also prohibitive. In fact, even imaging of, and evidence of, impurity Fe (which is known to be present from ICP analysis of chemically dissolved metals) using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) is elusive. Site-specific Transmission Elec","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":"34-37"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0081510EEL","citationCount":"44","resultStr":"{\"title\":\"Nuclear Microprobe Analysis for Determination of Element Enrichment Following Magnesium Dissolution\",\"authors\":\"N. Birbilis, T. Cain, J. Laird, X. Xia, J. Scully, A. Hughes\",\"doi\":\"10.1149/2.0081510EEL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With significant increases in the production and utility of magnesium (Mg) in the past decade, Mg-alloys remain an attractive material for weight reduction in several industries, 1 in addition to substantial exploration as electrode materials in primary and secondary batteries. 2‐3 In such cases, the unambiguous determination of factors that play a role in corrosion/electrochemistry of Mg are of critical importance. The influence of impurities on the corrosion of Mg has been well documented since the early 20 th century, 4 with tolerance limits for a number of elements in Mg proposed. 5 In particular, the influence of deliberate alloying additions of low levels of transition metals (iron, manganeseandzirconium)oncorrosionofMghavebeendocumented by systematic studies. 6 Furthermore, the comparison of the electrochemistry of pure Mg specimens with low (at commercial levels of ∼40 ppmw) and ultra low levels (≤ 1 ppmw) of Fe were also recently presented. 7 Such studies add to the evidence that impurity elements, nominally of low solubility, 8‐10 influence the corrosion electrochemistry of Mg. In spite of this, at least two key aspects with respect to the in-service performance of Mg remain under researched. The first of these includes the detection and analysis of impurity elements on the Mg surface, and the study of possible enrichment of impurity elements on Mg during dissolution; both aspects are worthy of elaboration. Regarding the analysis of impurity elements on Mg surfaces, this is a particularly challenging task for the common methods nominally used in corrosion related works. Nominally, impurity concentrations are in the parts per million range. For example, commercial purity Mg will nominally contain < 100 ppmw Fe, which is below < 0.01% on the basis of weight %, and even lower on the basis of atom %. The analysis of such low levels of Fe with accuracy is not readily possible by methods such as X-ray photoelectron spectroscopy or Auger electron spectroscopy, which require concentrations approaching 1% (which is ∼100 times larger than the typical Fe impurity content) for accurate detection. Similarly, the signal to noise ratio, and large interaction volume, from energy dispersive X-ray spectroscopy are also prohibitive. In fact, even imaging of, and evidence of, impurity Fe (which is known to be present from ICP analysis of chemically dissolved metals) using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) is elusive. Site-specific Transmission Elec\",\"PeriodicalId\":11470,\"journal\":{\"name\":\"ECS Electrochemistry Letters\",\"volume\":\"4 1\",\"pages\":\"34-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1149/2.0081510EEL\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Electrochemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0081510EEL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Electrochemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0081510EEL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

在过去的十年中,随着镁(Mg)的生产和应用的显著增加,镁合金在许多工业中仍然是一种有吸引力的减轻重量的材料,除了作为一次和二次电池的电极材料进行大量探索之外。2‐3在这种情况下,明确确定影响Mg腐蚀/电化学的因素是至关重要的。自20世纪初以来,杂质对镁腐蚀的影响已经有了很好的记录,4对镁中的一些元素提出了容忍限度。特别是,有意添加低水平过渡金属(铁、锰和锆)的合金对镁腐蚀的影响已经被系统的研究记录下来。此外,最近还介绍了低铁(商业水平为~ 40 ppmw)和超低铁(≤1 ppmw)纯Mg样品的电化学比较。这些研究进一步证明,名义上低溶解度的杂质元素8‐10会影响Mg的腐蚀电化学。尽管如此,至少有两个关于Mg在职表现的关键方面仍在研究中。第一部分包括对Mg表面杂质元素的检测和分析,以及在溶解过程中杂质元素在Mg表面可能富集的研究;这两个方面都值得详细阐述。对于Mg表面杂质元素的分析,对于腐蚀相关工作中名义上使用的常用方法来说,这是一项特别具有挑战性的任务。名义上,杂质浓度在百万分之一范围内。例如,商业纯度的Mg名义上含有< 100ppmw的铁,按重量%计低于< 0.01%,按原子%计更低。通过x射线光电子能谱或俄歇电子能谱等方法,不容易准确分析如此低水平的铁,这些方法需要浓度接近1%(比典型的铁杂质含量大100倍)才能准确检测。同样,从能量色散x射线光谱中得到的信噪比和大的相互作用体积也是令人望而却步的。事实上,即使使用场发射枪扫描电子显微镜(FEG-SEM)对杂质Fe(已知存在于化学溶解金属的ICP分析中)进行成像和证据也是难以捉摸的。特定站点传输电气
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear Microprobe Analysis for Determination of Element Enrichment Following Magnesium Dissolution
With significant increases in the production and utility of magnesium (Mg) in the past decade, Mg-alloys remain an attractive material for weight reduction in several industries, 1 in addition to substantial exploration as electrode materials in primary and secondary batteries. 2‐3 In such cases, the unambiguous determination of factors that play a role in corrosion/electrochemistry of Mg are of critical importance. The influence of impurities on the corrosion of Mg has been well documented since the early 20 th century, 4 with tolerance limits for a number of elements in Mg proposed. 5 In particular, the influence of deliberate alloying additions of low levels of transition metals (iron, manganeseandzirconium)oncorrosionofMghavebeendocumented by systematic studies. 6 Furthermore, the comparison of the electrochemistry of pure Mg specimens with low (at commercial levels of ∼40 ppmw) and ultra low levels (≤ 1 ppmw) of Fe were also recently presented. 7 Such studies add to the evidence that impurity elements, nominally of low solubility, 8‐10 influence the corrosion electrochemistry of Mg. In spite of this, at least two key aspects with respect to the in-service performance of Mg remain under researched. The first of these includes the detection and analysis of impurity elements on the Mg surface, and the study of possible enrichment of impurity elements on Mg during dissolution; both aspects are worthy of elaboration. Regarding the analysis of impurity elements on Mg surfaces, this is a particularly challenging task for the common methods nominally used in corrosion related works. Nominally, impurity concentrations are in the parts per million range. For example, commercial purity Mg will nominally contain < 100 ppmw Fe, which is below < 0.01% on the basis of weight %, and even lower on the basis of atom %. The analysis of such low levels of Fe with accuracy is not readily possible by methods such as X-ray photoelectron spectroscopy or Auger electron spectroscopy, which require concentrations approaching 1% (which is ∼100 times larger than the typical Fe impurity content) for accurate detection. Similarly, the signal to noise ratio, and large interaction volume, from energy dispersive X-ray spectroscopy are also prohibitive. In fact, even imaging of, and evidence of, impurity Fe (which is known to be present from ICP analysis of chemically dissolved metals) using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) is elusive. Site-specific Transmission Elec
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Electrochemistry Letters
ECS Electrochemistry Letters ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
期刊最新文献
Periodic Lateral Root Priming: What Makes It Tick? Preparation of Mesoporous Si@PAN Electrodes for Li-Ion Batteries via the In-Situ Polymerization of PAN Effect of Clamping Pressure and Temperature on the Performance of a CuCl(aq)/HCl(aq) Electrolyzer Carbon-Free AZO/Ru Cathode for Li-Air Batteries Electrochemical Characterization of Iodide Ions Adsorption Kinetics at Bi(111) Electrode from Three-Component Ionic Liquids Mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1