可充电混合水电池的自放电

Aishuak Konarov, D. Gosselink, Yongguang Zhang, Ye Tian, Diana Askhatova, Pu Chen
{"title":"可充电混合水电池的自放电","authors":"Aishuak Konarov, D. Gosselink, Yongguang Zhang, Ye Tian, Diana Askhatova, Pu Chen","doi":"10.1149/2.0111512EEL","DOIUrl":null,"url":null,"abstract":"Self-discharge refers to the loss in stored charge of a battery without connection between its electrodes as a consequence of internal chemical reactions. Self-discharge processes can be tested in a loadfree state for a fixed time. Two self-discharge reactions are possible in a Li-ion cell: one is chemical and the other electrochemical. Because of their reactivity, charged cells can undergo side reactions, and factors such as purity of the active material or electrolyte, the specific surface area of the electrodes, conductors, binders or separators can have effect on the self-discharge performance. These reactions are mostly irreversible while electrochemical reactions can be reversible. For example, lithium re-intercalation can lead to self-discharge of Li-ion batteries, as has been demonstrated by many researchers who have studied the different factors that could affect self-discharge of","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0111512EEL","citationCount":"13","resultStr":"{\"title\":\"Self-Discharge of Rechargeable Hybrid Aqueous Battery\",\"authors\":\"Aishuak Konarov, D. Gosselink, Yongguang Zhang, Ye Tian, Diana Askhatova, Pu Chen\",\"doi\":\"10.1149/2.0111512EEL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-discharge refers to the loss in stored charge of a battery without connection between its electrodes as a consequence of internal chemical reactions. Self-discharge processes can be tested in a loadfree state for a fixed time. Two self-discharge reactions are possible in a Li-ion cell: one is chemical and the other electrochemical. Because of their reactivity, charged cells can undergo side reactions, and factors such as purity of the active material or electrolyte, the specific surface area of the electrodes, conductors, binders or separators can have effect on the self-discharge performance. These reactions are mostly irreversible while electrochemical reactions can be reversible. For example, lithium re-intercalation can lead to self-discharge of Li-ion batteries, as has been demonstrated by many researchers who have studied the different factors that could affect self-discharge of\",\"PeriodicalId\":11470,\"journal\":{\"name\":\"ECS Electrochemistry Letters\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1149/2.0111512EEL\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Electrochemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0111512EEL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Electrochemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0111512EEL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

自放电是指由于电池内部的化学反应,在电极之间没有连接的情况下,电池储存的电荷损失。自放电过程可以在固定时间的无负载状态下进行测试。锂离子电池可能发生两种自放电反应:一种是化学反应,另一种是电化学反应。由于它们的反应性,带电电池会发生副反应,而诸如活性物质或电解质的纯度、电极、导体、粘合剂或分离器的比表面积等因素都会对自放电性能产生影响。这些反应大多是不可逆的,而电化学反应可以是可逆的。例如,锂再嵌入会导致锂离子电池自放电,许多研究人员研究了可能影响锂离子电池自放电的不同因素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Discharge of Rechargeable Hybrid Aqueous Battery
Self-discharge refers to the loss in stored charge of a battery without connection between its electrodes as a consequence of internal chemical reactions. Self-discharge processes can be tested in a loadfree state for a fixed time. Two self-discharge reactions are possible in a Li-ion cell: one is chemical and the other electrochemical. Because of their reactivity, charged cells can undergo side reactions, and factors such as purity of the active material or electrolyte, the specific surface area of the electrodes, conductors, binders or separators can have effect on the self-discharge performance. These reactions are mostly irreversible while electrochemical reactions can be reversible. For example, lithium re-intercalation can lead to self-discharge of Li-ion batteries, as has been demonstrated by many researchers who have studied the different factors that could affect self-discharge of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ECS Electrochemistry Letters
ECS Electrochemistry Letters ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
期刊最新文献
Periodic Lateral Root Priming: What Makes It Tick? Preparation of Mesoporous Si@PAN Electrodes for Li-Ion Batteries via the In-Situ Polymerization of PAN Effect of Clamping Pressure and Temperature on the Performance of a CuCl(aq)/HCl(aq) Electrolyzer Carbon-Free AZO/Ru Cathode for Li-Air Batteries Electrochemical Characterization of Iodide Ions Adsorption Kinetics at Bi(111) Electrode from Three-Component Ionic Liquids Mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1