{"title":"下肢外骨骼柔顺关节机制研究进展","authors":"G. MiguelA., lvez-Zúñiga, Alejandro Aceves-L, Pez","doi":"10.1155/2016/5751391","DOIUrl":null,"url":null,"abstract":"Lower limb exoskeletons are experiencing a rapid development that may suggest a prompt introduction to the market. These devices have an inherent close interaction with the human body; therefore, it is necessary to ensure user’s safety and comfort. The first exoskeletal designs used to represent the human joints as simple revolute joints. This approximation introduces an axial misalignment issue, which generates uncontrollable internal forces. A mathematical description of the said misalignments is provided to better understand the concept and its consequences. This review will only focus on mechanisms aiming to comply with its user.","PeriodicalId":51834,"journal":{"name":"Journal of Robotics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/5751391","citationCount":"7","resultStr":"{\"title\":\"A Review on Compliant Joint Mechanisms for Lower Limb Exoskeletons\",\"authors\":\"G. MiguelA., lvez-Zúñiga, Alejandro Aceves-L, Pez\",\"doi\":\"10.1155/2016/5751391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower limb exoskeletons are experiencing a rapid development that may suggest a prompt introduction to the market. These devices have an inherent close interaction with the human body; therefore, it is necessary to ensure user’s safety and comfort. The first exoskeletal designs used to represent the human joints as simple revolute joints. This approximation introduces an axial misalignment issue, which generates uncontrollable internal forces. A mathematical description of the said misalignments is provided to better understand the concept and its consequences. This review will only focus on mechanisms aiming to comply with its user.\",\"PeriodicalId\":51834,\"journal\":{\"name\":\"Journal of Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/5751391\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/5751391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/5751391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
A Review on Compliant Joint Mechanisms for Lower Limb Exoskeletons
Lower limb exoskeletons are experiencing a rapid development that may suggest a prompt introduction to the market. These devices have an inherent close interaction with the human body; therefore, it is necessary to ensure user’s safety and comfort. The first exoskeletal designs used to represent the human joints as simple revolute joints. This approximation introduces an axial misalignment issue, which generates uncontrollable internal forces. A mathematical description of the said misalignments is provided to better understand the concept and its consequences. This review will only focus on mechanisms aiming to comply with its user.
期刊介绍:
Journal of Robotics publishes papers on all aspects automated mechanical devices, from their design and fabrication, to their testing and practical implementation. The journal welcomes submissions from the associated fields of materials science, electrical and computer engineering, and machine learning and artificial intelligence, that contribute towards advances in the technology and understanding of robotic systems.