准分布式传感测量应用中光纤光栅应变传感器的解耦优化

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Active and Passive Electronic Components Pub Date : 2016-01-01 DOI:10.1155/2016/6523046
F. Chaoui, O. Aghzout, Mounia Chakkour, M. E. Yakhloufi
{"title":"准分布式传感测量应用中光纤光栅应变传感器的解耦优化","authors":"F. Chaoui, O. Aghzout, Mounia Chakkour, M. E. Yakhloufi","doi":"10.1155/2016/6523046","DOIUrl":null,"url":null,"abstract":"A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS) for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL), and full width at half maximum (FWHM) with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":"2016 1","pages":"1-8"},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6523046","citationCount":"15","resultStr":"{\"title\":\"Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications\",\"authors\":\"F. Chaoui, O. Aghzout, Mounia Chakkour, M. E. Yakhloufi\",\"doi\":\"10.1155/2016/6523046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS) for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL), and full width at half maximum (FWHM) with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":\"2016 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/6523046\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6523046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6523046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了一种用于准分布式应变传感的新型光纤布拉格光栅传感器优化设计方法。所提出的优化的主要目标是获得高于90%的反射率水平和约−40 dB的旁瓣电平,这适用于准分布式应变传感应用。为此,研究了不同的设计参数,如消光轮廓、光栅长度和折射率,以增强和优化FBGS的设计。然后,根据反射率、旁瓣电平(SLL)和半最大值全宽度(FWHM)与其他作者提出的apodization剖面进行了性能比较。优化后的传感器集成在由8个传感器组成的准分布式传感系统上,具有较高的可靠性。在准分布式系统中,每个通道的应变灵敏度范围也很宽。结果证明了该优化方法的有效性,可进一步应用于任何准分布式传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications
A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS) for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL), and full width at half maximum (FWHM) with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
期刊最新文献
Analysis and Design of High-Energy-Efficiency Amplifiers for Delta-Sigma Modulators An Ameliorated Small-Signal Model Parameter Extraction Method for GaN HEMTs up to 110 GHz with Short-Test Structure A Low Threshold Voltage Ultradynamic Voltage Scaling SRAM Write Assist Technique for High-Speed Applications Performance and Stability Analysis of Built-In Self-Read and Write Assist 10T SRAM Cell A 0.9 V, 8T2R nvSRAM Memory Cell with High Density and Improved Storage/Restoration Time in 28 nm Technology Node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1