{"title":"溶胶-凝胶法制备补偿离子共掺杂SrTiO3:Pr3+红色荧光粉及其发光增强机理研究","authors":"D. Guo, Xiaodong Zhang, J. Yun","doi":"10.1155/2014/674780","DOIUrl":null,"url":null,"abstract":"SrTiO3:Pr3+ is the most representative titanate matrix red phosphor for field emission display (FED). The red luminous efficiency of SrTiO3:Pr3+ will be greatly improved after the compensation ions codoping, so SrTiO3:Pr3+ red phosphor has been a research focus at home and abroad. SrTiO3:Pr3+, SrTiO3:Pr3+, Mg2+, and SrTiO3:Pr3+, Al3+ phosphors are synthesized by a new sol-gel method. Crystal structure, spectral characteristics, and luminescence enhancement mechanism of the sample were studied by XRD and PL spectra. The results showed that after co-doped, SrTiO3:Pr3+ phosphor is single SrTiO3 cubic phase, the main emission front is located at 614 nm, corresponding to Pr3+ ions 1D2 3H4 transition emission. SrTiO3:Pr3+, Mg2+ and SrTiO3:Pr3+, Al3+ phosphor luminescence intensity is enhanced, but the main luminescence mechanism is not changed. Acceptor impurity = Mg2+, Al3+ will replace Ti bit after being doped into the crystal lattice to form charge compensation corresponding defect centers to reduce the demand of Sr2+ or Ti3+ vacancy. While Sr-doped Pr will make lattice distortion and transition energy of 4f-5d is very sensitive to crystal electric field changes around Pr atom. Doping different impurities will make electric field distribution around the icon have a different change. It increases energy transfer of 4f-5d transition and improves the luminous intensity of SrTiO3:Pr3+ red phosphor.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2014 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/674780","citationCount":"4","resultStr":"{\"title\":\"Preparation of Compensation Ions Codoped SrTiO3:Pr3+ Red Phosphor with the Sol-Gel Method and Study of Its Luminescence Enhancement Mechanism\",\"authors\":\"D. Guo, Xiaodong Zhang, J. Yun\",\"doi\":\"10.1155/2014/674780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SrTiO3:Pr3+ is the most representative titanate matrix red phosphor for field emission display (FED). The red luminous efficiency of SrTiO3:Pr3+ will be greatly improved after the compensation ions codoping, so SrTiO3:Pr3+ red phosphor has been a research focus at home and abroad. SrTiO3:Pr3+, SrTiO3:Pr3+, Mg2+, and SrTiO3:Pr3+, Al3+ phosphors are synthesized by a new sol-gel method. Crystal structure, spectral characteristics, and luminescence enhancement mechanism of the sample were studied by XRD and PL spectra. The results showed that after co-doped, SrTiO3:Pr3+ phosphor is single SrTiO3 cubic phase, the main emission front is located at 614 nm, corresponding to Pr3+ ions 1D2 3H4 transition emission. SrTiO3:Pr3+, Mg2+ and SrTiO3:Pr3+, Al3+ phosphor luminescence intensity is enhanced, but the main luminescence mechanism is not changed. Acceptor impurity = Mg2+, Al3+ will replace Ti bit after being doped into the crystal lattice to form charge compensation corresponding defect centers to reduce the demand of Sr2+ or Ti3+ vacancy. While Sr-doped Pr will make lattice distortion and transition energy of 4f-5d is very sensitive to crystal electric field changes around Pr atom. Doping different impurities will make electric field distribution around the icon have a different change. It increases energy transfer of 4f-5d transition and improves the luminous intensity of SrTiO3:Pr3+ red phosphor.\",\"PeriodicalId\":7352,\"journal\":{\"name\":\"Advances in Optoelectronics\",\"volume\":\"2014 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/674780\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/674780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/674780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Preparation of Compensation Ions Codoped SrTiO3:Pr3+ Red Phosphor with the Sol-Gel Method and Study of Its Luminescence Enhancement Mechanism
SrTiO3:Pr3+ is the most representative titanate matrix red phosphor for field emission display (FED). The red luminous efficiency of SrTiO3:Pr3+ will be greatly improved after the compensation ions codoping, so SrTiO3:Pr3+ red phosphor has been a research focus at home and abroad. SrTiO3:Pr3+, SrTiO3:Pr3+, Mg2+, and SrTiO3:Pr3+, Al3+ phosphors are synthesized by a new sol-gel method. Crystal structure, spectral characteristics, and luminescence enhancement mechanism of the sample were studied by XRD and PL spectra. The results showed that after co-doped, SrTiO3:Pr3+ phosphor is single SrTiO3 cubic phase, the main emission front is located at 614 nm, corresponding to Pr3+ ions 1D2 3H4 transition emission. SrTiO3:Pr3+, Mg2+ and SrTiO3:Pr3+, Al3+ phosphor luminescence intensity is enhanced, but the main luminescence mechanism is not changed. Acceptor impurity = Mg2+, Al3+ will replace Ti bit after being doped into the crystal lattice to form charge compensation corresponding defect centers to reduce the demand of Sr2+ or Ti3+ vacancy. While Sr-doped Pr will make lattice distortion and transition energy of 4f-5d is very sensitive to crystal electric field changes around Pr atom. Doping different impurities will make electric field distribution around the icon have a different change. It increases energy transfer of 4f-5d transition and improves the luminous intensity of SrTiO3:Pr3+ red phosphor.
期刊介绍:
Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.