{"title":"用散斑干涉技术研究PWB的热力学行为","authors":"B. Trentadue, Giuseppe Illuzzi","doi":"10.1155/2015/141583","DOIUrl":null,"url":null,"abstract":"The speckle interferometry technique has been used in this work in order to determine the thermomechanical behaviour of Printed Wiring Board (PWB) (circuits) of a radio integrated with tape player and speakers. A preliminary experiment of such technique has been carried out on a single electronic component (silicon transistor), during the thermal transient and at the steady state. The thermal deformation and stresses on PWB have been obtained through related experimental analyses on both cases. The results showed a very good applicability of speckle technique on the irregular object surface as PWB.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/141583","citationCount":"3","resultStr":"{\"title\":\"Thermomechanical Behaviour of a PWB by Speckle Interferometry Technique\",\"authors\":\"B. Trentadue, Giuseppe Illuzzi\",\"doi\":\"10.1155/2015/141583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The speckle interferometry technique has been used in this work in order to determine the thermomechanical behaviour of Printed Wiring Board (PWB) (circuits) of a radio integrated with tape player and speakers. A preliminary experiment of such technique has been carried out on a single electronic component (silicon transistor), during the thermal transient and at the steady state. The thermal deformation and stresses on PWB have been obtained through related experimental analyses on both cases. The results showed a very good applicability of speckle technique on the irregular object surface as PWB.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2015-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/141583\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/141583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/141583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Thermomechanical Behaviour of a PWB by Speckle Interferometry Technique
The speckle interferometry technique has been used in this work in order to determine the thermomechanical behaviour of Printed Wiring Board (PWB) (circuits) of a radio integrated with tape player and speakers. A preliminary experiment of such technique has been carried out on a single electronic component (silicon transistor), during the thermal transient and at the steady state. The thermal deformation and stresses on PWB have been obtained through related experimental analyses on both cases. The results showed a very good applicability of speckle technique on the irregular object surface as PWB.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.