{"title":"干扰素对细菌和病毒感染的反应","authors":"E. Pietras, Supriya K. Saha, Genhong Cheng","doi":"10.1177/09680519060120040601","DOIUrl":null,"url":null,"abstract":"Type I interferons (IFNs) were first described several decades ago as soluble factors that were capable of `interfering' with viral replication when added to infected cells. Type I IFNs have been shown to be induced by recognition of viral DNA and RNA via three distinct pathways: (i) a TRIFdependent pathway in macrophages via TLRs 3 and 4; (ii) a MyD88-dependent pathway in plasmacytoid dendritic cells (pDCs) via TLRs 7/8 and 9; and (iii) an intracellular recognition pathway utilizing the cytoplasmic receptors RIG-I/MDA5. Interestingly, these viral recognition pathways converge on TRAF3, which induces interferon through the activation of IRF3 or IRF7 by the TBK-1 and IKKi complexes. While type I IFN has been traditionally associated with antiviral responses, recent studies have demonstrated that many bacteria also induce type I interferon responses. The mechanisms of type I IFN induction and its role in host defense, however, are largely unclear. Studies with the Gram-positive intracellular bacterium Listeria monocytogenes indicated that it may trigger type I IFN induction through novel TLR-independent intracellular receptors and type I IFN may play a detrimental role to host response against listerial infection. In this article, we summarize some of these findings and discuss the functional differences of type I IFNs in bacterial and viral infections.","PeriodicalId":80292,"journal":{"name":"Journal of endotoxin research","volume":"12 1","pages":"246 - 250"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09680519060120040601","citationCount":"42","resultStr":"{\"title\":\"The interferon response to bacterial and viral infections\",\"authors\":\"E. Pietras, Supriya K. Saha, Genhong Cheng\",\"doi\":\"10.1177/09680519060120040601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type I interferons (IFNs) were first described several decades ago as soluble factors that were capable of `interfering' with viral replication when added to infected cells. Type I IFNs have been shown to be induced by recognition of viral DNA and RNA via three distinct pathways: (i) a TRIFdependent pathway in macrophages via TLRs 3 and 4; (ii) a MyD88-dependent pathway in plasmacytoid dendritic cells (pDCs) via TLRs 7/8 and 9; and (iii) an intracellular recognition pathway utilizing the cytoplasmic receptors RIG-I/MDA5. Interestingly, these viral recognition pathways converge on TRAF3, which induces interferon through the activation of IRF3 or IRF7 by the TBK-1 and IKKi complexes. While type I IFN has been traditionally associated with antiviral responses, recent studies have demonstrated that many bacteria also induce type I interferon responses. The mechanisms of type I IFN induction and its role in host defense, however, are largely unclear. Studies with the Gram-positive intracellular bacterium Listeria monocytogenes indicated that it may trigger type I IFN induction through novel TLR-independent intracellular receptors and type I IFN may play a detrimental role to host response against listerial infection. In this article, we summarize some of these findings and discuss the functional differences of type I IFNs in bacterial and viral infections.\",\"PeriodicalId\":80292,\"journal\":{\"name\":\"Journal of endotoxin research\",\"volume\":\"12 1\",\"pages\":\"246 - 250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/09680519060120040601\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of endotoxin research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09680519060120040601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endotoxin research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09680519060120040601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The interferon response to bacterial and viral infections
Type I interferons (IFNs) were first described several decades ago as soluble factors that were capable of `interfering' with viral replication when added to infected cells. Type I IFNs have been shown to be induced by recognition of viral DNA and RNA via three distinct pathways: (i) a TRIFdependent pathway in macrophages via TLRs 3 and 4; (ii) a MyD88-dependent pathway in plasmacytoid dendritic cells (pDCs) via TLRs 7/8 and 9; and (iii) an intracellular recognition pathway utilizing the cytoplasmic receptors RIG-I/MDA5. Interestingly, these viral recognition pathways converge on TRAF3, which induces interferon through the activation of IRF3 or IRF7 by the TBK-1 and IKKi complexes. While type I IFN has been traditionally associated with antiviral responses, recent studies have demonstrated that many bacteria also induce type I interferon responses. The mechanisms of type I IFN induction and its role in host defense, however, are largely unclear. Studies with the Gram-positive intracellular bacterium Listeria monocytogenes indicated that it may trigger type I IFN induction through novel TLR-independent intracellular receptors and type I IFN may play a detrimental role to host response against listerial infection. In this article, we summarize some of these findings and discuss the functional differences of type I IFNs in bacterial and viral infections.