风电场内风力机优化布局的粒子群算法

Mariam El jaadi, Touria Haidi, Doha Bouabdallaoui
{"title":"风电场内风力机优化布局的粒子群算法","authors":"Mariam El jaadi, Touria Haidi, Doha Bouabdallaoui","doi":"10.11591/ijai.v12.i3.pp1260-1269","DOIUrl":null,"url":null,"abstract":"The wind turbine’s output power is heavily affected by the arrangement of the wind turbine location. Wind farm planning endeavors to firstly maximize the farm’s output energy. Secondly, it seeks to minimize the effects of the wake phenomenon. This paper attempts to find the best possible location of a wind turbine inside a square farm using the particle swarm optimization (PSO) method whilst focusing on the three salient cases: the steadiness of wind direction and speed, the variability of the flow direction with a steady speed, and the variability of direction for three discrete wind speeds. The proposed algorithm generated results that will be contrasted to previous studies on the same topic with different metaheuristic methods such as a genetic algorithm. When compared to the optimum findings from prior research, the suggested approach has a reduced cost. It is developed by language C through MATLAB environment considering a square with the dimensions 2×2 kilometers.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Particle swarm optimization for the optimal layout of wind turbines inside a wind farm\",\"authors\":\"Mariam El jaadi, Touria Haidi, Doha Bouabdallaoui\",\"doi\":\"10.11591/ijai.v12.i3.pp1260-1269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wind turbine’s output power is heavily affected by the arrangement of the wind turbine location. Wind farm planning endeavors to firstly maximize the farm’s output energy. Secondly, it seeks to minimize the effects of the wake phenomenon. This paper attempts to find the best possible location of a wind turbine inside a square farm using the particle swarm optimization (PSO) method whilst focusing on the three salient cases: the steadiness of wind direction and speed, the variability of the flow direction with a steady speed, and the variability of direction for three discrete wind speeds. The proposed algorithm generated results that will be contrasted to previous studies on the same topic with different metaheuristic methods such as a genetic algorithm. When compared to the optimum findings from prior research, the suggested approach has a reduced cost. It is developed by language C through MATLAB environment considering a square with the dimensions 2×2 kilometers.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i3.pp1260-1269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i3.pp1260-1269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 3

摘要

风力机的位置布置对风力机的输出功率有很大影响。风电场规划努力首先最大化农场的输出能量。其次,它寻求最小化尾流现象的影响。本文试图利用粒子群优化(PSO)方法找到方形电场内风力发电机的最佳位置,同时重点关注三个突出情况:风向和风速的稳定性,稳定风速下风向的可变性,以及三个离散风速下风向的可变性。该算法产生的结果将与先前使用不同的元启发式方法(如遗传算法)对同一主题的研究进行对比。与先前研究的最佳结果相比,该方法降低了成本。它是在MATLAB环境下用C语言开发的,考虑尺寸为2×2公里的正方形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle swarm optimization for the optimal layout of wind turbines inside a wind farm
The wind turbine’s output power is heavily affected by the arrangement of the wind turbine location. Wind farm planning endeavors to firstly maximize the farm’s output energy. Secondly, it seeks to minimize the effects of the wake phenomenon. This paper attempts to find the best possible location of a wind turbine inside a square farm using the particle swarm optimization (PSO) method whilst focusing on the three salient cases: the steadiness of wind direction and speed, the variability of the flow direction with a steady speed, and the variability of direction for three discrete wind speeds. The proposed algorithm generated results that will be contrasted to previous studies on the same topic with different metaheuristic methods such as a genetic algorithm. When compared to the optimum findings from prior research, the suggested approach has a reduced cost. It is developed by language C through MATLAB environment considering a square with the dimensions 2×2 kilometers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1