基于有限数据集的公交混合出行时间估计模型

A. Prakash, R. Sumathi, Honnudike Satyanarayana Sudhira
{"title":"基于有限数据集的公交混合出行时间估计模型","authors":"A. Prakash, R. Sumathi, Honnudike Satyanarayana Sudhira","doi":"10.11591/ijai.v12.i4.pp1755-1764","DOIUrl":null,"url":null,"abstract":"A reliable transit service can motivate commuters to switch their travelingmode from private to public. Providing necessary information to passengerswill reduce the uncertainties encountered during their travel and improveservice reliability. This article addresses the challenge of predicting dynamictravel times in urban areas where real-time traffic flow information isunavailable. In this perspective, a hybrid travel time estimation model(HTTEM) is proposed to predict the dynamic travel time using the predictedtravel times of the machine learning model and the preceding trip details. Theproposed model is validated using the location data of public transit buses of,Tumakuru, India. From the numerical results through error metrics, it is foundthat HTTEM improves the prediction accuracy, finally, it is concluded that theproposed model is suitable for estimating travel time in urban areas withheterogeneous traffic and limited traffic infrastructure.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid travel time estimation model for public transit buses using limited datasets\",\"authors\":\"A. Prakash, R. Sumathi, Honnudike Satyanarayana Sudhira\",\"doi\":\"10.11591/ijai.v12.i4.pp1755-1764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reliable transit service can motivate commuters to switch their travelingmode from private to public. Providing necessary information to passengerswill reduce the uncertainties encountered during their travel and improveservice reliability. This article addresses the challenge of predicting dynamictravel times in urban areas where real-time traffic flow information isunavailable. In this perspective, a hybrid travel time estimation model(HTTEM) is proposed to predict the dynamic travel time using the predictedtravel times of the machine learning model and the preceding trip details. Theproposed model is validated using the location data of public transit buses of,Tumakuru, India. From the numerical results through error metrics, it is foundthat HTTEM improves the prediction accuracy, finally, it is concluded that theproposed model is suitable for estimating travel time in urban areas withheterogeneous traffic and limited traffic infrastructure.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i4.pp1755-1764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1755-1764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

可靠的交通服务可以促使通勤者将他们的出行方式从私人转向公共。向乘客提供必要的信息将减少他们在旅行中遇到的不确定性,提高服务的可靠性。本文解决了在无法获得实时交通流信息的城市地区预测动态出行时间的挑战。从这个角度出发,提出了一种混合行程时间估计模型(HTTEM),利用机器学习模型的预测行程时间和之前的行程细节来预测动态行程时间。利用印度图马库鲁的公共交通公交车的位置数据对所提出的模型进行了验证。从误差度量的数值结果来看,HTTEM提高了预测精度,最后得出结论,该模型适用于交通异质性和交通基础设施有限的城市地区的出行时间估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid travel time estimation model for public transit buses using limited datasets
A reliable transit service can motivate commuters to switch their travelingmode from private to public. Providing necessary information to passengerswill reduce the uncertainties encountered during their travel and improveservice reliability. This article addresses the challenge of predicting dynamictravel times in urban areas where real-time traffic flow information isunavailable. In this perspective, a hybrid travel time estimation model(HTTEM) is proposed to predict the dynamic travel time using the predictedtravel times of the machine learning model and the preceding trip details. Theproposed model is validated using the location data of public transit buses of,Tumakuru, India. From the numerical results through error metrics, it is foundthat HTTEM improves the prediction accuracy, finally, it is concluded that theproposed model is suitable for estimating travel time in urban areas withheterogeneous traffic and limited traffic infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1