{"title":"空间搜索算法与粒子群算法在基于anfiss的模糊模型设计中的比较研究","authors":"Wei Huang, L. Ding, Sung-Kwun Oh","doi":"10.1234/MJEE.V5I1.366","DOIUrl":null,"url":null,"abstract":"In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of ANFIS-based fuzzy models based on SSA and information granulation (IG). In comparison with “conventional” evolutionary algorithms (such as PSO), SSA leads not only to better search performance to find global optimization but is also more computationally effective. In the hybrid optimization of ANFIS-based fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of ANFIS-based fuzzy models comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using three representative numerical examples such as Non-linear function, gas furnace, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some “conventional” fuzzy models already encountered in the literature.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"5 1","pages":"50-59"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Comparative Study of Space Search Algorithm and Particle Swarm Optimization in the Design of ANFIS-based Fuzzy Models\",\"authors\":\"Wei Huang, L. Ding, Sung-Kwun Oh\",\"doi\":\"10.1234/MJEE.V5I1.366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of ANFIS-based fuzzy models based on SSA and information granulation (IG). In comparison with “conventional” evolutionary algorithms (such as PSO), SSA leads not only to better search performance to find global optimization but is also more computationally effective. In the hybrid optimization of ANFIS-based fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of ANFIS-based fuzzy models comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using three representative numerical examples such as Non-linear function, gas furnace, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some “conventional” fuzzy models already encountered in the literature.\",\"PeriodicalId\":37804,\"journal\":{\"name\":\"Majlesi Journal of Electrical Engineering\",\"volume\":\"5 1\",\"pages\":\"50-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majlesi Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1234/MJEE.V5I1.366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1234/MJEE.V5I1.366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A Comparative Study of Space Search Algorithm and Particle Swarm Optimization in the Design of ANFIS-based Fuzzy Models
In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of ANFIS-based fuzzy models based on SSA and information granulation (IG). In comparison with “conventional” evolutionary algorithms (such as PSO), SSA leads not only to better search performance to find global optimization but is also more computationally effective. In the hybrid optimization of ANFIS-based fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of ANFIS-based fuzzy models comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using three representative numerical examples such as Non-linear function, gas furnace, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some “conventional” fuzzy models already encountered in the literature.
期刊介绍:
The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.