{"title":"用于低压等离子体激发的鸟笼式谐振器的设计与制造","authors":"K. Jurík, J. Starý, P. Drexler","doi":"10.13164/re.2023.0044","DOIUrl":null,"url":null,"abstract":". This paper presents a design, analysis and optimization of birdcage resonators employed in a novel radiofrequency plasma source. Three resonators were simulated and fabricated. The resonators differ in their design and in the different materials of used dielectric – polyimide and polytetrafluorethylene (PTFE). The resonance frequency of fabricated samples possesses a maximal error of 2.2% compared to the simulated values. The performance in plasma excitation is related to the electrical parameters, while the best performing resonator (PTFE-based) exhibits the maximum real impedance of 644.3 Ω at the resonance frequency and the 799.5 V/m electric field strength. This resonator shows the best power efficiency in a plasma ignition experiment. The resonator ignited the discharge at ca. 1 Pa of am-bient air atmosphere with only 0.34 W of input radiofrequency power.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Fabrication of Birdcage Resonators for Low-pressure Plasma Excitation\",\"authors\":\"K. Jurík, J. Starý, P. Drexler\",\"doi\":\"10.13164/re.2023.0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper presents a design, analysis and optimization of birdcage resonators employed in a novel radiofrequency plasma source. Three resonators were simulated and fabricated. The resonators differ in their design and in the different materials of used dielectric – polyimide and polytetrafluorethylene (PTFE). The resonance frequency of fabricated samples possesses a maximal error of 2.2% compared to the simulated values. The performance in plasma excitation is related to the electrical parameters, while the best performing resonator (PTFE-based) exhibits the maximum real impedance of 644.3 Ω at the resonance frequency and the 799.5 V/m electric field strength. This resonator shows the best power efficiency in a plasma ignition experiment. The resonator ignited the discharge at ca. 1 Pa of am-bient air atmosphere with only 0.34 W of input radiofrequency power.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Fabrication of Birdcage Resonators for Low-pressure Plasma Excitation
. This paper presents a design, analysis and optimization of birdcage resonators employed in a novel radiofrequency plasma source. Three resonators were simulated and fabricated. The resonators differ in their design and in the different materials of used dielectric – polyimide and polytetrafluorethylene (PTFE). The resonance frequency of fabricated samples possesses a maximal error of 2.2% compared to the simulated values. The performance in plasma excitation is related to the electrical parameters, while the best performing resonator (PTFE-based) exhibits the maximum real impedance of 644.3 Ω at the resonance frequency and the 799.5 V/m electric field strength. This resonator shows the best power efficiency in a plasma ignition experiment. The resonator ignited the discharge at ca. 1 Pa of am-bient air atmosphere with only 0.34 W of input radiofrequency power.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.