使用人格化模式的社交媒体提要安全决策算法

Pub Date : 2023-01-01 DOI:10.12720/jait.14.1.145-152
P. Gawade, Sarang A. Joshi
{"title":"使用人格化模式的社交媒体提要安全决策算法","authors":"P. Gawade, Sarang A. Joshi","doi":"10.12720/jait.14.1.145-152","DOIUrl":null,"url":null,"abstract":"For safety decisions in social media applications, it is necessary to classify personification patterns. The paper proposes using video material to apply machine learning to select, and extract significant feature qualities and grasp the semantics of feature space connection to comprehend the personification of a certain user. The feature traits are based on a computer vision-based approach and a natural language-based approach. A strong belief is calculated from language descriptions and persona traits. These traits are then used to determine the overlap of feature space using various ML algorithms to deduce the intrinsic relationships. The proposed goal is validated by this algorithm and user personification is an important aspect that can be captured through video analytics. Using this personification-based method, better decisions can be made in the given domain space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for Safety Decisions in Social Media Feeds Using Personification Patterns\",\"authors\":\"P. Gawade, Sarang A. Joshi\",\"doi\":\"10.12720/jait.14.1.145-152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For safety decisions in social media applications, it is necessary to classify personification patterns. The paper proposes using video material to apply machine learning to select, and extract significant feature qualities and grasp the semantics of feature space connection to comprehend the personification of a certain user. The feature traits are based on a computer vision-based approach and a natural language-based approach. A strong belief is calculated from language descriptions and persona traits. These traits are then used to determine the overlap of feature space using various ML algorithms to deduce the intrinsic relationships. The proposed goal is validated by this algorithm and user personification is an important aspect that can be captured through video analytics. Using this personification-based method, better decisions can be made in the given domain space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.1.145-152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.1.145-152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于社交媒体应用中的安全决策,有必要对人格化模式进行分类。本文提出利用视频素材,运用机器学习来选择、提取重要的特征品质,把握特征空间连接的语义,从而理解某一用户的人格化。特征特征是基于计算机视觉的方法和基于自然语言的方法。强烈的信念是从语言描述和人物特征中计算出来的。然后使用这些特征来确定特征空间的重叠,使用各种ML算法来推断内在关系。该算法验证了所提出的目标,用户个性化是可以通过视频分析捕获的一个重要方面。使用这种基于人格化的方法,可以在给定的领域空间中做出更好的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Algorithm for Safety Decisions in Social Media Feeds Using Personification Patterns
For safety decisions in social media applications, it is necessary to classify personification patterns. The paper proposes using video material to apply machine learning to select, and extract significant feature qualities and grasp the semantics of feature space connection to comprehend the personification of a certain user. The feature traits are based on a computer vision-based approach and a natural language-based approach. A strong belief is calculated from language descriptions and persona traits. These traits are then used to determine the overlap of feature space using various ML algorithms to deduce the intrinsic relationships. The proposed goal is validated by this algorithm and user personification is an important aspect that can be captured through video analytics. Using this personification-based method, better decisions can be made in the given domain space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1