基于模糊蝴蝶生命周期算法的公司成长性评价

Pub Date : 2023-01-01 DOI:10.12720/jait.14.1.1-6
Gregoryus Imannuel Perdana, M. Devanda, D. N. Utama
{"title":"基于模糊蝴蝶生命周期算法的公司成长性评价","authors":"Gregoryus Imannuel Perdana, M. Devanda, D. N. Utama","doi":"10.12720/jait.14.1.1-6","DOIUrl":null,"url":null,"abstract":"The previous study of the Butterfly Life Cycle Algorithm (BLCA) has been technically realized in two stages of BLCA in measuring a company's growth performance. It was based on a combined method of the Balanced Scorecard (BSC) and Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. This paper aims to continue the BLCA implementation by performing five stages of BLCA and then improve the algorithm by implementing the Fuzzy Logic (FL) conception into BSC. The implementation of the FL method transforms the bias values in four BSC parameters into a precise value to make the model more precise. A complete BLCA algorithm combined with FL is used to accurately assess companies' growth performance. By doing some corrections to the preceding study’s data of contribution value, the simulation result shows the difference in the performance value of 0.0026 with the previous one.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Based Butterfly Life Cycle Algorithm for Measuring Company's Growth Performance\",\"authors\":\"Gregoryus Imannuel Perdana, M. Devanda, D. N. Utama\",\"doi\":\"10.12720/jait.14.1.1-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The previous study of the Butterfly Life Cycle Algorithm (BLCA) has been technically realized in two stages of BLCA in measuring a company's growth performance. It was based on a combined method of the Balanced Scorecard (BSC) and Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. This paper aims to continue the BLCA implementation by performing five stages of BLCA and then improve the algorithm by implementing the Fuzzy Logic (FL) conception into BSC. The implementation of the FL method transforms the bias values in four BSC parameters into a precise value to make the model more precise. A complete BLCA algorithm combined with FL is used to accurately assess companies' growth performance. By doing some corrections to the preceding study’s data of contribution value, the simulation result shows the difference in the performance value of 0.0026 with the previous one.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.1.1-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.1.1-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蝴蝶生命周期算法(Butterfly Life Cycle Algorithm, BLCA)在过去的研究中,已经从技术上实现了蝴蝶生命周期算法在衡量公司成长绩效方面的两个阶段。它是基于平衡计分卡(BSC)和优势、劣势、机会和威胁(SWOT)分析相结合的方法。本文旨在通过执行BLCA的五个阶段来继续BLCA的实现,然后通过将模糊逻辑(FL)概念引入平衡计分卡来改进算法。FL方法的实现将四个BSC参数中的偏置值转换为精确值,使模型更加精确。采用完整的BLCA算法结合FL来准确评估公司的成长绩效。通过对前人研究的贡献值数据进行一些修正,仿真结果显示与前人的性能值相差0.0026。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Fuzzy Based Butterfly Life Cycle Algorithm for Measuring Company's Growth Performance
The previous study of the Butterfly Life Cycle Algorithm (BLCA) has been technically realized in two stages of BLCA in measuring a company's growth performance. It was based on a combined method of the Balanced Scorecard (BSC) and Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. This paper aims to continue the BLCA implementation by performing five stages of BLCA and then improve the algorithm by implementing the Fuzzy Logic (FL) conception into BSC. The implementation of the FL method transforms the bias values in four BSC parameters into a precise value to make the model more precise. A complete BLCA algorithm combined with FL is used to accurately assess companies' growth performance. By doing some corrections to the preceding study’s data of contribution value, the simulation result shows the difference in the performance value of 0.0026 with the previous one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1