基于顺序小生境差分进化与并行工人的非线性最优控制

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Advances in Information Technology Pub Date : 2023-01-01 DOI:10.12720/jait.14.2.257-263
Y. Matanga, Yanxia Sun, Zenghui Wang
{"title":"基于顺序小生境差分进化与并行工人的非线性最优控制","authors":"Y. Matanga, Yanxia Sun, Zenghui Wang","doi":"10.12720/jait.14.2.257-263","DOIUrl":null,"url":null,"abstract":"—Optimal control is a high-quality and challenging control approach that requires very explorative metaheuristic optimisation techniques to find the most efficient control profile for the performance index function, especially in the case of highly nonlinear dynamic processes. Considering the success of differential evolution in nonlinear optimal control problems, the current research proposes the use of sequential niching differential evolution to boost further the solution accuracy of the solver owing to its globally convergent feature. Also, because sequential niching bans previously discovered solutions, it can propose several competing optimal control profiles relevant for control practitioners. Simulation experiments of the proposed algorithm have been first conducted on IEEE CEC2017/2019 datasets and n-dimensional classical test sets, yielding improved solution accuracy and robust performances on optimal control case studies","PeriodicalId":36452,"journal":{"name":"Journal of Advances in Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Optimal Control Using Sequential Niching Differential Evolution and Parallel Workers\",\"authors\":\"Y. Matanga, Yanxia Sun, Zenghui Wang\",\"doi\":\"10.12720/jait.14.2.257-263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Optimal control is a high-quality and challenging control approach that requires very explorative metaheuristic optimisation techniques to find the most efficient control profile for the performance index function, especially in the case of highly nonlinear dynamic processes. Considering the success of differential evolution in nonlinear optimal control problems, the current research proposes the use of sequential niching differential evolution to boost further the solution accuracy of the solver owing to its globally convergent feature. Also, because sequential niching bans previously discovered solutions, it can propose several competing optimal control profiles relevant for control practitioners. Simulation experiments of the proposed algorithm have been first conducted on IEEE CEC2017/2019 datasets and n-dimensional classical test sets, yielding improved solution accuracy and robust performances on optimal control case studies\",\"PeriodicalId\":36452,\"journal\":{\"name\":\"Journal of Advances in Information Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.2.257-263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.2.257-263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

-最优控制是一种高质量和具有挑战性的控制方法,需要非常探索性的元启发式优化技术来找到性能指标函数的最有效的控制轮廓,特别是在高度非线性动态过程的情况下。考虑到差分进化在非线性最优控制问题中的成功,目前的研究提出利用序列小生境差分进化的全局收敛特性进一步提高求解器的求解精度。此外,由于顺序小生境禁止先前发现的解决方案,它可以为控制从业者提出几个相互竞争的最优控制概况。该算法首先在IEEE CEC2017/2019数据集和n维经典测试集上进行了仿真实验,在最优控制案例研究中获得了更高的解精度和鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Optimal Control Using Sequential Niching Differential Evolution and Parallel Workers
—Optimal control is a high-quality and challenging control approach that requires very explorative metaheuristic optimisation techniques to find the most efficient control profile for the performance index function, especially in the case of highly nonlinear dynamic processes. Considering the success of differential evolution in nonlinear optimal control problems, the current research proposes the use of sequential niching differential evolution to boost further the solution accuracy of the solver owing to its globally convergent feature. Also, because sequential niching bans previously discovered solutions, it can propose several competing optimal control profiles relevant for control practitioners. Simulation experiments of the proposed algorithm have been first conducted on IEEE CEC2017/2019 datasets and n-dimensional classical test sets, yielding improved solution accuracy and robust performances on optimal control case studies
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Information Technology
Journal of Advances in Information Technology Computer Science-Information Systems
CiteScore
4.20
自引率
20.00%
发文量
46
期刊最新文献
Energy Prediction for Mobile Sink Placement by Deep Maxout Network in WSN Philippines' Free Wi-Fi Roll-out Project: Safe or Not? Identification of Leaf Disease Using Machine Learning Algorithm for Improving the Agricultural System Ensuring Cloud Data Security Using the Soldier Ant Algorithm Gamelan Melody Generation Using LSTM Networks Controlled by Composition Meter Rules and Special Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1