基于深度学习算法的蒙面人脸检测与识别系统

Pub Date : 2023-01-01 DOI:10.12720/jait.14.2.224-232
Hayat Al-Dmour, Afaf Tareef, A. Alkalbani, A. Hammouri, B. Alrahmani
{"title":"基于深度学习算法的蒙面人脸检测与识别系统","authors":"Hayat Al-Dmour, Afaf Tareef, A. Alkalbani, A. Hammouri, B. Alrahmani","doi":"10.12720/jait.14.2.224-232","DOIUrl":null,"url":null,"abstract":"Coronavirus (COVID-19) pandemic and its several variants have developed new habits in our daily lives. For instance, people have begun covering their faces in public areas and tight quarters to restrict the spread of the disease. However, the usage of face masks has hampered the ability of facial recognition systems to determine people's identities for registration authentication and dependability purpose. This study proposes a new deep-learning-based system for detecting and recognizing masked faces and determining the identity and whether the face is properly masked or not using several face image datasets. The proposed system was trained using a Convolutional Neural Network (CNN) with cross-validation and early stopping. First, a binary classification model was trained to discriminate between masked and unmasked faces, with the top model achieving a 99.77% accuracy. Then, a multi-class model was trained to classify the masked face images into three labels, i.e., correctly, incorrectly, and non-masked faces. The proposed model has achieved a high accuracy of 99.5%. Finally, the system recognizes the person's identity with an average accuracy of 97.98%. The visual assessment has proved that the proposed system succeeds in locating and matching faces. © 2023 by the authors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Masked Face Detection and Recognition System Based on Deep Learning Algorithms\",\"authors\":\"Hayat Al-Dmour, Afaf Tareef, A. Alkalbani, A. Hammouri, B. Alrahmani\",\"doi\":\"10.12720/jait.14.2.224-232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus (COVID-19) pandemic and its several variants have developed new habits in our daily lives. For instance, people have begun covering their faces in public areas and tight quarters to restrict the spread of the disease. However, the usage of face masks has hampered the ability of facial recognition systems to determine people's identities for registration authentication and dependability purpose. This study proposes a new deep-learning-based system for detecting and recognizing masked faces and determining the identity and whether the face is properly masked or not using several face image datasets. The proposed system was trained using a Convolutional Neural Network (CNN) with cross-validation and early stopping. First, a binary classification model was trained to discriminate between masked and unmasked faces, with the top model achieving a 99.77% accuracy. Then, a multi-class model was trained to classify the masked face images into three labels, i.e., correctly, incorrectly, and non-masked faces. The proposed model has achieved a high accuracy of 99.5%. Finally, the system recognizes the person's identity with an average accuracy of 97.98%. The visual assessment has proved that the proposed system succeeds in locating and matching faces. © 2023 by the authors.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.2.224-232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.2.224-232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠状病毒(COVID-19)大流行及其几种变体已经在我们的日常生活中形成了新的习惯。例如,人们开始在公共场所和狭小的地方遮住脸,以限制疾病的传播。然而,口罩的使用阻碍了面部识别系统确定人们身份的能力,以进行注册认证和可靠性目的。本研究提出了一种新的基于深度学习的系统,用于检测和识别被遮挡的人脸,并使用多个人脸图像数据集确定身份以及人脸是否被正确遮挡。该系统使用交叉验证和早期停止的卷积神经网络(CNN)进行训练。首先,训练一个二元分类模型来区分蒙面和未蒙面的人脸,其中最优模型的准确率达到99.77%。然后,训练一个多类模型,将被屏蔽的人脸图像分为正确、不正确和非被屏蔽的三个标签。该模型的准确率达到了99.5%。最后,系统对人的身份进行识别,平均准确率为97.98%。视觉评价结果表明,该系统在人脸定位和匹配上是成功的。©2023作者所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Masked Face Detection and Recognition System Based on Deep Learning Algorithms
Coronavirus (COVID-19) pandemic and its several variants have developed new habits in our daily lives. For instance, people have begun covering their faces in public areas and tight quarters to restrict the spread of the disease. However, the usage of face masks has hampered the ability of facial recognition systems to determine people's identities for registration authentication and dependability purpose. This study proposes a new deep-learning-based system for detecting and recognizing masked faces and determining the identity and whether the face is properly masked or not using several face image datasets. The proposed system was trained using a Convolutional Neural Network (CNN) with cross-validation and early stopping. First, a binary classification model was trained to discriminate between masked and unmasked faces, with the top model achieving a 99.77% accuracy. Then, a multi-class model was trained to classify the masked face images into three labels, i.e., correctly, incorrectly, and non-masked faces. The proposed model has achieved a high accuracy of 99.5%. Finally, the system recognizes the person's identity with an average accuracy of 97.98%. The visual assessment has proved that the proposed system succeeds in locating and matching faces. © 2023 by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1