视网膜疾病的多分类方法

Pub Date : 2023-01-01 DOI:10.12720/jait.14.3.392-398
Mario G. Gualsaqui, Stefany M. Cuenca, Ibeth L. Rosero, D. A. Almeida, C. Cadena, Fernando Villalba, Jonathan D. Cruz
{"title":"视网膜疾病的多分类方法","authors":"Mario G. Gualsaqui, Stefany M. Cuenca, Ibeth L. Rosero, D. A. Almeida, C. Cadena, Fernando Villalba, Jonathan D. Cruz","doi":"10.12720/jait.14.3.392-398","DOIUrl":null,"url":null,"abstract":"—Early detection of the diagnosis of some diseases in the retina of the eye can improve the chances of cure and also prevent blindness. In this study, a Convolutional Neural Network (CNN) with different architectures (Scratch Model, GoogleNet, VGG, ResNet, MobileNet and DenseNet) was created to make a comparison between them and find the one with the best percentage of accuracy and less loss to generate the model for a better automatic classification of images using a MURED database containing retinal images already labeled previously with their respective disease. The results show that the model with the ResNet architecture variant InceptionResNetV2 has an accuracy of 49.85%.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-class Classification Approach for Retinal Diseases\",\"authors\":\"Mario G. Gualsaqui, Stefany M. Cuenca, Ibeth L. Rosero, D. A. Almeida, C. Cadena, Fernando Villalba, Jonathan D. Cruz\",\"doi\":\"10.12720/jait.14.3.392-398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Early detection of the diagnosis of some diseases in the retina of the eye can improve the chances of cure and also prevent blindness. In this study, a Convolutional Neural Network (CNN) with different architectures (Scratch Model, GoogleNet, VGG, ResNet, MobileNet and DenseNet) was created to make a comparison between them and find the one with the best percentage of accuracy and less loss to generate the model for a better automatic classification of images using a MURED database containing retinal images already labeled previously with their respective disease. The results show that the model with the ResNet architecture variant InceptionResNetV2 has an accuracy of 49.85%.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.3.392-398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.3.392-398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

-对某些视网膜疾病的早期发现诊断可以提高治愈的机会,也可以预防失明。在本研究中,我们创建了一个具有不同架构(Scratch Model、GoogleNet、VGG、ResNet、MobileNet和DenseNet)的卷积神经网络(CNN),对它们进行比较,找到准确率最高、损失最小的一个,并生成模型,以便使用包含先前已标记为各自疾病的视网膜图像的MURED数据库对图像进行更好的自动分类。结果表明,采用ResNet架构变体InceptionResNetV2的模型准确率为49.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Multi-class Classification Approach for Retinal Diseases
—Early detection of the diagnosis of some diseases in the retina of the eye can improve the chances of cure and also prevent blindness. In this study, a Convolutional Neural Network (CNN) with different architectures (Scratch Model, GoogleNet, VGG, ResNet, MobileNet and DenseNet) was created to make a comparison between them and find the one with the best percentage of accuracy and less loss to generate the model for a better automatic classification of images using a MURED database containing retinal images already labeled previously with their respective disease. The results show that the model with the ResNet architecture variant InceptionResNetV2 has an accuracy of 49.85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1