不同粒径树皮部分液化的刨花板

IF 0.8 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD Drewno Pub Date : 2021-01-01 DOI:10.12841/WOOD.1644-3985.363.10
W. Jiang, S. Adamopoulos, M. Petrić, M. Šernek, S. Medved
{"title":"不同粒径树皮部分液化的刨花板","authors":"W. Jiang, S. Adamopoulos, M. Petrić, M. Šernek, S. Medved","doi":"10.12841/WOOD.1644-3985.363.10","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method of partially liquefying bark sawmilling waste for use in making particleboards. Maritime pine (Pinus pinaster Ait.) bark of different particle sizes (fine, medium, coarse, and mixed) was partially liquefied in the presence of ethylene glycol as a solvent and sulphuric acid as a catalyst at 180°C for 30 minutes. Single-layer particleboards were prepared by mixing partially liquefied bark (PLB) and wood chips at a ratio of 0.25 with no adhesives (group A) and at ratios of 0.25 or 0.1 with melamine-urea-formaldehyde (MUF) adhesives for additional bonding (groups B and C respectively). Mechanical and physical properties of the particleboards were tested according to European standards. The results showed that the boards in group A had lower densities, inferior mechanical properties and higher moisture content than those in groups B and C. Bark particle size had a significant effect on the mechanical properties of particleboards within each group. Additional MUF bonding and avoidance of coarse bark particles had a positive effect on mechanical properties. The thickness swelling (TS) and water absorption (WA) values of MUF-bonded boards were lower than those of boards without MUF, and greater addition of PLB produced particleboards with better water resistance. Bark particle size was not as critical for TS and WA as for mechanical properties. The overall results suggested using a bark particle size of < 2 mm for further studies.","PeriodicalId":50566,"journal":{"name":"Drewno","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Particleboards with partially liquefied bark of different particle sizes\",\"authors\":\"W. Jiang, S. Adamopoulos, M. Petrić, M. Šernek, S. Medved\",\"doi\":\"10.12841/WOOD.1644-3985.363.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method of partially liquefying bark sawmilling waste for use in making particleboards. Maritime pine (Pinus pinaster Ait.) bark of different particle sizes (fine, medium, coarse, and mixed) was partially liquefied in the presence of ethylene glycol as a solvent and sulphuric acid as a catalyst at 180°C for 30 minutes. Single-layer particleboards were prepared by mixing partially liquefied bark (PLB) and wood chips at a ratio of 0.25 with no adhesives (group A) and at ratios of 0.25 or 0.1 with melamine-urea-formaldehyde (MUF) adhesives for additional bonding (groups B and C respectively). Mechanical and physical properties of the particleboards were tested according to European standards. The results showed that the boards in group A had lower densities, inferior mechanical properties and higher moisture content than those in groups B and C. Bark particle size had a significant effect on the mechanical properties of particleboards within each group. Additional MUF bonding and avoidance of coarse bark particles had a positive effect on mechanical properties. The thickness swelling (TS) and water absorption (WA) values of MUF-bonded boards were lower than those of boards without MUF, and greater addition of PLB produced particleboards with better water resistance. Bark particle size was not as critical for TS and WA as for mechanical properties. The overall results suggested using a bark particle size of < 2 mm for further studies.\",\"PeriodicalId\":50566,\"journal\":{\"name\":\"Drewno\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drewno\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.12841/WOOD.1644-3985.363.10\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drewno","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.12841/WOOD.1644-3985.363.10","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种将树皮锯木废料部分液化用于制造刨花板的新方法。将不同粒径的海松(Pinus pinaster Ait.)树皮(细、中、粗、混)以乙二醇为溶剂,硫酸为催化剂,在180℃下部分液化30分钟。将部分液化树皮(PLB)和木屑以0.25的比例混合,不添加粘合剂(a组),以0.25或0.1的比例添加三聚氰胺脲醛(MUF)粘合剂进行附加粘合(B组和C组),制备单层刨花板。刨花板的机械和物理性能按照欧洲标准进行了测试。结果表明:A组刨花板密度较低,力学性能较差,含水率高于B组和c组。树皮粒径对各组刨花板力学性能影响显著。额外的MUF粘接和避免粗糙的树皮颗粒对机械性能有积极的影响。MUF结合板的厚度膨胀(TS)和吸水率(WA)值低于未添加MUF的板,PLB添加量越大,刨花板的耐水性越好。树皮粒度对TS和WA的影响不如对力学性能的影响重要。总体结果建议使用树皮粒径< 2 mm进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particleboards with partially liquefied bark of different particle sizes
This paper presents a novel method of partially liquefying bark sawmilling waste for use in making particleboards. Maritime pine (Pinus pinaster Ait.) bark of different particle sizes (fine, medium, coarse, and mixed) was partially liquefied in the presence of ethylene glycol as a solvent and sulphuric acid as a catalyst at 180°C for 30 minutes. Single-layer particleboards were prepared by mixing partially liquefied bark (PLB) and wood chips at a ratio of 0.25 with no adhesives (group A) and at ratios of 0.25 or 0.1 with melamine-urea-formaldehyde (MUF) adhesives for additional bonding (groups B and C respectively). Mechanical and physical properties of the particleboards were tested according to European standards. The results showed that the boards in group A had lower densities, inferior mechanical properties and higher moisture content than those in groups B and C. Bark particle size had a significant effect on the mechanical properties of particleboards within each group. Additional MUF bonding and avoidance of coarse bark particles had a positive effect on mechanical properties. The thickness swelling (TS) and water absorption (WA) values of MUF-bonded boards were lower than those of boards without MUF, and greater addition of PLB produced particleboards with better water resistance. Bark particle size was not as critical for TS and WA as for mechanical properties. The overall results suggested using a bark particle size of < 2 mm for further studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drewno
Drewno MATERIALS SCIENCE, PAPER & WOOD-
CiteScore
1.10
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Wood. Research papers. Reports. Announcements" ("Drewno") is an international scientific journal that publishes original results of innovatory basic and applied research concerning technological, technical, economic and ecological issues important for the wood science and forest-based industries, including their environment, and interesting to the international recipients. "Drewno" is an Open Access biannual journal. Aims and scope: wood science: anatomy, biology, chemistry, physics wood mechanical and chemical technology, inter alia, sawmilling, composite wood products, wooden construction, furniture making, wood pulp, paper making material engineering, biocomposites, nanocomposites material management environmental protection, safety of the processes, products and working stations biotechnology bioenergy, biofuels forestry: harvesting and wood quality wood-based industries economics The Editorial Board of the journal especially welcomes articles concerning increase in wood resources (wood mobilisation); innovative composites and lignocellulosic materials; new trends in the protection, modification and finishing of wood; biorefining of raw wood material; "green" building; new technologies of wood waste recycling; sustainable development; innovation management; and business networks.
期刊最新文献
Carbon Monoxide and Nitric Oxide Concentrations in Flue Gas During Combustion of Agricultural Biomass in the Residental Boiler Particleboards with partially liquefied bark of different particle sizes The methodology of acquisition and statistical analysis of data from the process of drying thin wooden elements Economic analysis of the collection and transportation of pruned branches from orchards for energy production. The influence of surface modification of wood particles with carbon nanotubes on properties of particleboard glued with phenol-formaldehyde resin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1