{"title":"北美和澳大利亚森林生物量和碳固存的估计和预测:45年的探索","authors":"D. Botkin, M. Ngugi, D. Doley","doi":"10.12841/WOOD.1644-3985.S05.01","DOIUrl":null,"url":null,"abstract":"A half-century of forest inventory research involving statistically-valid field measurements (using statistically representative sample size and showing confiden ce limits) and well-validated forecasting methods are reviewed in this paper. Some current procedures overestimate global and large-scale forest biomass, carbon storage, and carbon sequestering rates because they are based on statistically-invalid methods (errors in estimates are unavailable and unreported), or they fail to consider key dynamic characteristics of forests. It is sometimes assumed that old-growth forests can serve as fixed, steady-state storage of biomass and carbon for indefinitely long periods, but it is shown by both modelling and remote sensing that forests are dynamic systems, the state of which can change considerably over as short a time as a decade. Forecasting methods show that maximum biomass and carbon storage in some important forest types occurs in mid-succession, not in old-growth. It is proposed, therefore, that realistic biomass and carbon storage estimates used for carbon credits and offsets be determined as the statistical mean minus the confidence interval and that practical carbon sequestering programs include specific timeframes, not indefinitely long periods of time.","PeriodicalId":50566,"journal":{"name":"Drewno","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ESTIMATES AND FORECASTS OF FOREST BIOMASS AND CARBON SEQUESTRATION IN NORTH AMERICA AND AUSTRALIA: A FORTY-FIVE YEAR QUEST\",\"authors\":\"D. Botkin, M. Ngugi, D. Doley\",\"doi\":\"10.12841/WOOD.1644-3985.S05.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A half-century of forest inventory research involving statistically-valid field measurements (using statistically representative sample size and showing confiden ce limits) and well-validated forecasting methods are reviewed in this paper. Some current procedures overestimate global and large-scale forest biomass, carbon storage, and carbon sequestering rates because they are based on statistically-invalid methods (errors in estimates are unavailable and unreported), or they fail to consider key dynamic characteristics of forests. It is sometimes assumed that old-growth forests can serve as fixed, steady-state storage of biomass and carbon for indefinitely long periods, but it is shown by both modelling and remote sensing that forests are dynamic systems, the state of which can change considerably over as short a time as a decade. Forecasting methods show that maximum biomass and carbon storage in some important forest types occurs in mid-succession, not in old-growth. It is proposed, therefore, that realistic biomass and carbon storage estimates used for carbon credits and offsets be determined as the statistical mean minus the confidence interval and that practical carbon sequestering programs include specific timeframes, not indefinitely long periods of time.\",\"PeriodicalId\":50566,\"journal\":{\"name\":\"Drewno\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drewno\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.12841/WOOD.1644-3985.S05.01\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drewno","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.12841/WOOD.1644-3985.S05.01","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
ESTIMATES AND FORECASTS OF FOREST BIOMASS AND CARBON SEQUESTRATION IN NORTH AMERICA AND AUSTRALIA: A FORTY-FIVE YEAR QUEST
A half-century of forest inventory research involving statistically-valid field measurements (using statistically representative sample size and showing confiden ce limits) and well-validated forecasting methods are reviewed in this paper. Some current procedures overestimate global and large-scale forest biomass, carbon storage, and carbon sequestering rates because they are based on statistically-invalid methods (errors in estimates are unavailable and unreported), or they fail to consider key dynamic characteristics of forests. It is sometimes assumed that old-growth forests can serve as fixed, steady-state storage of biomass and carbon for indefinitely long periods, but it is shown by both modelling and remote sensing that forests are dynamic systems, the state of which can change considerably over as short a time as a decade. Forecasting methods show that maximum biomass and carbon storage in some important forest types occurs in mid-succession, not in old-growth. It is proposed, therefore, that realistic biomass and carbon storage estimates used for carbon credits and offsets be determined as the statistical mean minus the confidence interval and that practical carbon sequestering programs include specific timeframes, not indefinitely long periods of time.
期刊介绍:
Wood. Research papers. Reports. Announcements" ("Drewno") is an international scientific journal that publishes original results of innovatory basic and applied research concerning technological, technical, economic and ecological issues important for the wood science and forest-based industries, including their environment, and interesting to the international recipients. "Drewno" is an Open Access biannual journal.
Aims and scope:
wood science: anatomy, biology, chemistry, physics
wood mechanical and chemical technology, inter alia, sawmilling, composite wood products, wooden construction, furniture making, wood pulp, paper making
material engineering, biocomposites, nanocomposites
material management
environmental protection, safety of the processes, products and working stations
biotechnology
bioenergy, biofuels
forestry: harvesting and wood quality
wood-based industries economics
The Editorial Board of the journal especially welcomes articles concerning increase in wood resources (wood mobilisation); innovative composites and lignocellulosic materials; new trends in the protection, modification and finishing of wood; biorefining of raw wood material; "green" building; new technologies of wood waste recycling; sustainable development; innovation management; and business networks.