使用Snort和Wireshark工具检测本地网络中的异常活动

Pub Date : 2023-01-01 DOI:10.12720/jait.14.4.616-624
N. Alsharabi, Maha Alqunun, Belal Abdullah Hezam Murshed
{"title":"使用Snort和Wireshark工具检测本地网络中的异常活动","authors":"N. Alsharabi, Maha Alqunun, Belal Abdullah Hezam Murshed","doi":"10.12720/jait.14.4.616-624","DOIUrl":null,"url":null,"abstract":"—Many organizations worldwide encounter security risks on their local network caused by malware, which might result in losing sensitive data. Thus, network administrators should use efficient tools to observe the instantaneous network traffic and detect any suspicious activity. This project aims to detect incidents in local networks based on snort and Wireshark tools. Wireshark and snort tools combine their advantages to achieve maximum benefit, enhance the security level of local networks, and protect data. Snort Intrusion Detection System (Snort-IDS) is a security tool for network security. Snort-IDS rules use to match packet traffic. If some packets match the rules, Snort-IDS will generate alert messages. First, this project uses a virtual dataset that includes normal and abnormal traffic for the performance evaluation test. In addition, design local rules to detect anomalous activities. Second, use Wireshark software to analyze data packets. Second, use Wireshark software to analyze data packets. This project categorizes the detected patterns into two groups, anomaly-based detection, and signature-based detection. The results revealed the efficiency of the snort-IDS system in detecting unusual activities in both patterns and generating more information by analyzing it by Wireshark, such as source, destination, and protocol type. The promoted experience was tested on the virtual local network to ensure the effectiveness of this method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Unusual Activities in Local Network Using Snort and Wireshark Tools\",\"authors\":\"N. Alsharabi, Maha Alqunun, Belal Abdullah Hezam Murshed\",\"doi\":\"10.12720/jait.14.4.616-624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Many organizations worldwide encounter security risks on their local network caused by malware, which might result in losing sensitive data. Thus, network administrators should use efficient tools to observe the instantaneous network traffic and detect any suspicious activity. This project aims to detect incidents in local networks based on snort and Wireshark tools. Wireshark and snort tools combine their advantages to achieve maximum benefit, enhance the security level of local networks, and protect data. Snort Intrusion Detection System (Snort-IDS) is a security tool for network security. Snort-IDS rules use to match packet traffic. If some packets match the rules, Snort-IDS will generate alert messages. First, this project uses a virtual dataset that includes normal and abnormal traffic for the performance evaluation test. In addition, design local rules to detect anomalous activities. Second, use Wireshark software to analyze data packets. Second, use Wireshark software to analyze data packets. This project categorizes the detected patterns into two groups, anomaly-based detection, and signature-based detection. The results revealed the efficiency of the snort-IDS system in detecting unusual activities in both patterns and generating more information by analyzing it by Wireshark, such as source, destination, and protocol type. The promoted experience was tested on the virtual local network to ensure the effectiveness of this method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.4.616-624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.4.616-624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

—全球许多组织在其本地网络上都遇到了由恶意软件引起的安全风险,可能导致敏感数据丢失。因此,网络管理员应该使用有效的工具来观察瞬时网络流量并检测任何可疑活动。本项目旨在基于snort和Wireshark工具检测本地网络中的事件。Wireshark工具和snort工具的优势相结合,实现效益最大化,增强本地网络的安全水平,保护数据。Snort入侵检测系统(Snort- ids)是一种用于网络安全的安全工具。Snort-IDS规则用于匹配数据包流量。如果一些数据包匹配规则,Snort-IDS将生成警报消息。首先,该项目使用一个虚拟数据集,其中包括正常和异常流量进行性能评估测试。此外,设计局部规则来检测异常活动。其次,使用Wireshark软件对数据包进行分析。其次,使用Wireshark软件对数据包进行分析。本项目将检测到的模式分为两组,基于异常的检测和基于签名的检测。结果显示了snort-IDS系统在检测两种模式中的异常活动和通过Wireshark分析生成更多信息(如源、目的地和协议类型)方面的效率。在虚拟局域网中对提升体验进行了测试,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Detecting Unusual Activities in Local Network Using Snort and Wireshark Tools
—Many organizations worldwide encounter security risks on their local network caused by malware, which might result in losing sensitive data. Thus, network administrators should use efficient tools to observe the instantaneous network traffic and detect any suspicious activity. This project aims to detect incidents in local networks based on snort and Wireshark tools. Wireshark and snort tools combine their advantages to achieve maximum benefit, enhance the security level of local networks, and protect data. Snort Intrusion Detection System (Snort-IDS) is a security tool for network security. Snort-IDS rules use to match packet traffic. If some packets match the rules, Snort-IDS will generate alert messages. First, this project uses a virtual dataset that includes normal and abnormal traffic for the performance evaluation test. In addition, design local rules to detect anomalous activities. Second, use Wireshark software to analyze data packets. Second, use Wireshark software to analyze data packets. This project categorizes the detected patterns into two groups, anomaly-based detection, and signature-based detection. The results revealed the efficiency of the snort-IDS system in detecting unusual activities in both patterns and generating more information by analyzing it by Wireshark, such as source, destination, and protocol type. The promoted experience was tested on the virtual local network to ensure the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1