Xiaohang Pan, Hao Xu, Wei-Wei Yu, H. Shen, J. Hao, Yan Sun, Yue Shen, Xiangjian Meng, N. Dai
{"title":"基于柔性表面的太赫兹超级吸收器","authors":"Xiaohang Pan, Hao Xu, Wei-Wei Yu, H. Shen, J. Hao, Yan Sun, Yue Shen, Xiangjian Meng, N. Dai","doi":"10.11972/j.issn.1001-9014.2019.01.009","DOIUrl":null,"url":null,"abstract":"In recent years,Metamaterials,artificial electromagnetic materials that are constructed by subwavelength units,have demonstrated unusual abilities to manipulate electromagnetic waves and promised many potential applications. One of the most intriguing applications of metamaterials is to function as high performance absorbing medium. In this work,a new type of plasmonic flexible metasurfacebased super-absorber for Terahertz waves is designed,fabricated and characterized. Dependences of absorption on the optical properties of component materials and geometric parameters are optimized by full-wave numerical simulations,and then confirmed by experiments. Experimental results show that an absorption peak value of 99% is obtained at the frequency of 3 THz,which are in good agreement with numerical simulations.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible matesurface-based Terahertz super-absorber\",\"authors\":\"Xiaohang Pan, Hao Xu, Wei-Wei Yu, H. Shen, J. Hao, Yan Sun, Yue Shen, Xiangjian Meng, N. Dai\",\"doi\":\"10.11972/j.issn.1001-9014.2019.01.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years,Metamaterials,artificial electromagnetic materials that are constructed by subwavelength units,have demonstrated unusual abilities to manipulate electromagnetic waves and promised many potential applications. One of the most intriguing applications of metamaterials is to function as high performance absorbing medium. In this work,a new type of plasmonic flexible metasurfacebased super-absorber for Terahertz waves is designed,fabricated and characterized. Dependences of absorption on the optical properties of component materials and geometric parameters are optimized by full-wave numerical simulations,and then confirmed by experiments. Experimental results show that an absorption peak value of 99% is obtained at the frequency of 3 THz,which are in good agreement with numerical simulations.\",\"PeriodicalId\":50181,\"journal\":{\"name\":\"红外与毫米波学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"红外与毫米波学报\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.11972/j.issn.1001-9014.2019.01.009\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/j.issn.1001-9014.2019.01.009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
In recent years,Metamaterials,artificial electromagnetic materials that are constructed by subwavelength units,have demonstrated unusual abilities to manipulate electromagnetic waves and promised many potential applications. One of the most intriguing applications of metamaterials is to function as high performance absorbing medium. In this work,a new type of plasmonic flexible metasurfacebased super-absorber for Terahertz waves is designed,fabricated and characterized. Dependences of absorption on the optical properties of component materials and geometric parameters are optimized by full-wave numerical simulations,and then confirmed by experiments. Experimental results show that an absorption peak value of 99% is obtained at the frequency of 3 THz,which are in good agreement with numerical simulations.