基于深度卷积神经网络的红外图像小目标检测

IF 0.6 4区 物理与天体物理 Q4 OPTICS 红外与毫米波学报 Pub Date : 2019-01-01 DOI:10.11972/J.ISSN.1001-9014.2019.03.019
Shuang Wu, Z. Zuo
{"title":"基于深度卷积神经网络的红外图像小目标检测","authors":"Shuang Wu, Z. Zuo","doi":"10.11972/J.ISSN.1001-9014.2019.03.019","DOIUrl":null,"url":null,"abstract":"A new deep convolutional network for detecting small targets in infrared images is proposed. The problem of small targets detection is transformed into the classification of small targets’location distribution. First,a Fully Convolutional Networks is used for enhancing and initially screening the small targets. After that,the original image and the background suppressed image are selected as the inputs for classification network which is used for the follow-up screening,and then the SEnet ( Squeeze-and-Excitation Networks) is used to select the feature maps. The experimental results show that the detection network is superior to multiple typical infrared small target detection methods and has an excellent result on different signal-to-noise ratio,different scenes and motion blur targets.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Small target detection in infrared images using deep convolutional neural networks\",\"authors\":\"Shuang Wu, Z. Zuo\",\"doi\":\"10.11972/J.ISSN.1001-9014.2019.03.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new deep convolutional network for detecting small targets in infrared images is proposed. The problem of small targets detection is transformed into the classification of small targets’location distribution. First,a Fully Convolutional Networks is used for enhancing and initially screening the small targets. After that,the original image and the background suppressed image are selected as the inputs for classification network which is used for the follow-up screening,and then the SEnet ( Squeeze-and-Excitation Networks) is used to select the feature maps. The experimental results show that the detection network is superior to multiple typical infrared small target detection methods and has an excellent result on different signal-to-noise ratio,different scenes and motion blur targets.\",\"PeriodicalId\":50181,\"journal\":{\"name\":\"红外与毫米波学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"红外与毫米波学报\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.11972/J.ISSN.1001-9014.2019.03.019\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/J.ISSN.1001-9014.2019.03.019","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种新的用于红外图像小目标检测的深度卷积网络。将小目标检测问题转化为小目标位置分布的分类问题。首先,利用全卷积网络对小目标进行增强和初始筛选。然后,选择原始图像和背景抑制图像作为分类网络的输入,分类网络用于后续的筛选,然后使用SEnet (Squeeze-and-Excitation Networks)选择特征映射。实验结果表明,该检测网络优于多种典型的红外小目标检测方法,在不同信噪比、不同场景和运动模糊目标检测中均有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small target detection in infrared images using deep convolutional neural networks
A new deep convolutional network for detecting small targets in infrared images is proposed. The problem of small targets detection is transformed into the classification of small targets’location distribution. First,a Fully Convolutional Networks is used for enhancing and initially screening the small targets. After that,the original image and the background suppressed image are selected as the inputs for classification network which is used for the follow-up screening,and then the SEnet ( Squeeze-and-Excitation Networks) is used to select the feature maps. The experimental results show that the detection network is superior to multiple typical infrared small target detection methods and has an excellent result on different signal-to-noise ratio,different scenes and motion blur targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
期刊最新文献
Quantum well micropillar arrays with low filling factor for enhanced infrared absorption LiDAR waveform decomposition based on modified differential evolution algorithm Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals Infrared and visible image fusion based on edge-preserving and attention generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1