多层介质合成孔径雷达成像的扩展Omega-k算法

IF 0.6 4区 物理与天体物理 Q4 OPTICS 红外与毫米波学报 Pub Date : 2020-01-01 DOI:10.11972/J.ISSN.1001-9014.2020.03.017
Zheng Hai-tao, Liao Shiyong, D. James, Sun Houjun, Liu Xiaoguang
{"title":"多层介质合成孔径雷达成像的扩展Omega-k算法","authors":"Zheng Hai-tao, Liao Shiyong, D. James, Sun Houjun, Liu Xiaoguang","doi":"10.11972/J.ISSN.1001-9014.2020.03.017","DOIUrl":null,"url":null,"abstract":"Processing ground penetrating radar data to obtain well-focused images for object detection has been an active research area. Phase-shift migration(PSM)is a widely used method since it allows the wave velocity to vary with respect to multi-layer medium. However,this requires pixel-by-pixel calculation of the image,which is time-consuming. This paper presents an extended Omega-k algorithm for multi-layer medium imaging with signif⁃ icantly less computation complexity than the PSM algorithm. The extended Omega-k exploits fast interpolation in the wave-number domain instead of iterative calculating as done by PSM. The method of estimating the wave propagation velocity in different media is also proposed via vertex region extraction for phase compensation and image focusing. Various images of buried targets of a two-layer medium experiment are obtained,which validate the effectiveness of the proposed algorithm,and make it practical for some typical ground-based surveillance ap⁃ plications.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Omega-k algorithm for synthetic aperture radar imaging in multi-layer medium\",\"authors\":\"Zheng Hai-tao, Liao Shiyong, D. James, Sun Houjun, Liu Xiaoguang\",\"doi\":\"10.11972/J.ISSN.1001-9014.2020.03.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing ground penetrating radar data to obtain well-focused images for object detection has been an active research area. Phase-shift migration(PSM)is a widely used method since it allows the wave velocity to vary with respect to multi-layer medium. However,this requires pixel-by-pixel calculation of the image,which is time-consuming. This paper presents an extended Omega-k algorithm for multi-layer medium imaging with signif⁃ icantly less computation complexity than the PSM algorithm. The extended Omega-k exploits fast interpolation in the wave-number domain instead of iterative calculating as done by PSM. The method of estimating the wave propagation velocity in different media is also proposed via vertex region extraction for phase compensation and image focusing. Various images of buried targets of a two-layer medium experiment are obtained,which validate the effectiveness of the proposed algorithm,and make it practical for some typical ground-based surveillance ap⁃ plications.\",\"PeriodicalId\":50181,\"journal\":{\"name\":\"红外与毫米波学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"红外与毫米波学报\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.11972/J.ISSN.1001-9014.2020.03.017\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.11972/J.ISSN.1001-9014.2020.03.017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

对探地雷达数据进行处理以获得聚焦良好的目标检测图像一直是一个活跃的研究领域。相移偏移(PSM)是一种广泛使用的方法,因为它允许波速相对于多层介质变化。然而,这需要逐像素计算图像,这是耗时的。本文提出了一种适用于多层介质成像的扩展ω -k算法,其计算复杂度明显低于PSM算法。扩展的ω -k利用波数域的快速插值,而不是像PSM那样进行迭代计算。提出了利用顶点区域提取进行相位补偿和图像聚焦来估计波在不同介质中的传播速度的方法。实验结果验证了该算法的有效性,并将其应用于一些典型的地面监控应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Omega-k algorithm for synthetic aperture radar imaging in multi-layer medium
Processing ground penetrating radar data to obtain well-focused images for object detection has been an active research area. Phase-shift migration(PSM)is a widely used method since it allows the wave velocity to vary with respect to multi-layer medium. However,this requires pixel-by-pixel calculation of the image,which is time-consuming. This paper presents an extended Omega-k algorithm for multi-layer medium imaging with signif⁃ icantly less computation complexity than the PSM algorithm. The extended Omega-k exploits fast interpolation in the wave-number domain instead of iterative calculating as done by PSM. The method of estimating the wave propagation velocity in different media is also proposed via vertex region extraction for phase compensation and image focusing. Various images of buried targets of a two-layer medium experiment are obtained,which validate the effectiveness of the proposed algorithm,and make it practical for some typical ground-based surveillance ap⁃ plications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
期刊最新文献
Quantum well micropillar arrays with low filling factor for enhanced infrared absorption LiDAR waveform decomposition based on modified differential evolution algorithm Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm Effective enhancement of the photoluminescence from the Si + /Ni + ions co-implanted SOI by directly constructing the nanodisk photonic crystals Infrared and visible image fusion based on edge-preserving and attention generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1