R. Zhao, Jing Cheng, Q. Yuan, Yaoping Chen, Youngchul Kim
{"title":"在自由水面人工湿地中作为生物膜基质的应急植被的贡献","authors":"R. Zhao, Jing Cheng, Q. Yuan, Yaoping Chen, Youngchul Kim","doi":"10.12989/MWT.2019.10.1.057","DOIUrl":null,"url":null,"abstract":"This study assessed the contribution of emergent vegetation (Phragmites australis, Typha latifolia, and Nelumbo nucifera) to the submerged surface area, the amount of biofilms attached to the submerged portions of the plants, and the treatment performance of a free water surface (FWS) constructed wetland. Results showed that a 1% increase (31 m2) in the vegetative area resulted in an increase of 220 m2 of submerged surface area, and 0.48 kg Volatile Suspended Solids (VSS) of attached biofilm. As the vegetation coverage increased, effluent organic matter and total Kjeldahl nitrogen decreased. Conversely, a higher nitrate concentration was found in the effluent as a result of increased nitrification and incomplete denitrification, which was limited by the availability of a carbon source. In addition, a larger vegetation coverage resulted in a higher phosphorus in the effluent, most likely released from senescent biofilms and sediments, which resulted from the partial suppression of algal growth. Based on the results, it was recommended that constructed wetlands should be operated with a vegetation coverage of just under 50% to maximize pollutant removal.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"10 1","pages":"057"},"PeriodicalIF":0.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contributions of emergent vegetation acting as a substrate for biofilms in a free water surface constructed wetland\",\"authors\":\"R. Zhao, Jing Cheng, Q. Yuan, Yaoping Chen, Youngchul Kim\",\"doi\":\"10.12989/MWT.2019.10.1.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study assessed the contribution of emergent vegetation (Phragmites australis, Typha latifolia, and Nelumbo nucifera) to the submerged surface area, the amount of biofilms attached to the submerged portions of the plants, and the treatment performance of a free water surface (FWS) constructed wetland. Results showed that a 1% increase (31 m2) in the vegetative area resulted in an increase of 220 m2 of submerged surface area, and 0.48 kg Volatile Suspended Solids (VSS) of attached biofilm. As the vegetation coverage increased, effluent organic matter and total Kjeldahl nitrogen decreased. Conversely, a higher nitrate concentration was found in the effluent as a result of increased nitrification and incomplete denitrification, which was limited by the availability of a carbon source. In addition, a larger vegetation coverage resulted in a higher phosphorus in the effluent, most likely released from senescent biofilms and sediments, which resulted from the partial suppression of algal growth. Based on the results, it was recommended that constructed wetlands should be operated with a vegetation coverage of just under 50% to maximize pollutant removal.\",\"PeriodicalId\":18416,\"journal\":{\"name\":\"Membrane Water Treatment\",\"volume\":\"10 1\",\"pages\":\"057\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane Water Treatment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/MWT.2019.10.1.057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2019.10.1.057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Contributions of emergent vegetation acting as a substrate for biofilms in a free water surface constructed wetland
This study assessed the contribution of emergent vegetation (Phragmites australis, Typha latifolia, and Nelumbo nucifera) to the submerged surface area, the amount of biofilms attached to the submerged portions of the plants, and the treatment performance of a free water surface (FWS) constructed wetland. Results showed that a 1% increase (31 m2) in the vegetative area resulted in an increase of 220 m2 of submerged surface area, and 0.48 kg Volatile Suspended Solids (VSS) of attached biofilm. As the vegetation coverage increased, effluent organic matter and total Kjeldahl nitrogen decreased. Conversely, a higher nitrate concentration was found in the effluent as a result of increased nitrification and incomplete denitrification, which was limited by the availability of a carbon source. In addition, a larger vegetation coverage resulted in a higher phosphorus in the effluent, most likely released from senescent biofilms and sediments, which resulted from the partial suppression of algal growth. Based on the results, it was recommended that constructed wetlands should be operated with a vegetation coverage of just under 50% to maximize pollutant removal.
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.