二部随机图中的贪婪匹配

Q1 Mathematics Stochastic Systems Pub Date : 2021-11-02 DOI:10.1287/stsy.2021.0082
N. Arnosti
{"title":"二部随机图中的贪婪匹配","authors":"N. Arnosti","doi":"10.1287/stsy.2021.0082","DOIUrl":null,"url":null,"abstract":"This paper studies the performance of greedy matching algorithms on bipartite graphs [Formula: see text]. We focus primarily on three classical algorithms: [Formula: see text], which sequentially selects random edges from [Formula: see text]; [Formula: see text], which sequentially matches random vertices in [Formula: see text] to random neighbors; and [Formula: see text], which generates a random priority order over vertices in [Formula: see text] and then sequentially matches random vertices in [Formula: see text] to their highest-priority remaining neighbor. Prior work has focused on identifying the worst-case approximation ratio for each algorithm. This guarantee is highest for [Formula: see text] and lowest for [Formula: see text]. Our work instead studies the average performance of these algorithms when the edge set [Formula: see text] is random. Our first result compares [Formula: see text] and [Formula: see text] and shows that on average, [Formula: see text] produces more matches. This result holds for finite graphs (in contrast to previous asymptotic results) and also applies to “many to one” matching in which each vertex in [Formula: see text] can match with multiple vertices in [Formula: see text]. Our second result compares [Formula: see text] and [Formula: see text] and shows that the better worst-case guarantee of [Formula: see text] does not translate into better average performance. In “one to one” settings where each vertex in [Formula: see text] can match with only one vertex in [Formula: see text], the algorithms result in the same number of matches. When each vertex in [Formula: see text] can match with two vertices in [Formula: see text] produces more matches than [Formula: see text].","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Greedy Matching in Bipartite Random Graphs\",\"authors\":\"N. Arnosti\",\"doi\":\"10.1287/stsy.2021.0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the performance of greedy matching algorithms on bipartite graphs [Formula: see text]. We focus primarily on three classical algorithms: [Formula: see text], which sequentially selects random edges from [Formula: see text]; [Formula: see text], which sequentially matches random vertices in [Formula: see text] to random neighbors; and [Formula: see text], which generates a random priority order over vertices in [Formula: see text] and then sequentially matches random vertices in [Formula: see text] to their highest-priority remaining neighbor. Prior work has focused on identifying the worst-case approximation ratio for each algorithm. This guarantee is highest for [Formula: see text] and lowest for [Formula: see text]. Our work instead studies the average performance of these algorithms when the edge set [Formula: see text] is random. Our first result compares [Formula: see text] and [Formula: see text] and shows that on average, [Formula: see text] produces more matches. This result holds for finite graphs (in contrast to previous asymptotic results) and also applies to “many to one” matching in which each vertex in [Formula: see text] can match with multiple vertices in [Formula: see text]. Our second result compares [Formula: see text] and [Formula: see text] and shows that the better worst-case guarantee of [Formula: see text] does not translate into better average performance. In “one to one” settings where each vertex in [Formula: see text] can match with only one vertex in [Formula: see text], the algorithms result in the same number of matches. When each vertex in [Formula: see text] can match with two vertices in [Formula: see text] produces more matches than [Formula: see text].\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2021.0082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2021.0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了贪心匹配算法在二部图上的性能[公式:见文]。我们主要关注三种经典算法:[公式:见文],它依次从[公式:见文]中选择随机边缘;[公式:见文],将[公式:见文]中的随机顶点顺序匹配到随机邻居;和[公式:见文],它在[公式:见文]的顶点上生成一个随机的优先顺序,然后顺序地将[公式:见文]中的随机顶点与其剩余的最高优先级邻居匹配。先前的工作集中在确定每种算法的最坏情况近似比。这种保证对于[公式:见正文]是最高的,对于[公式:见正文]是最低的。我们的工作是研究当边缘集[公式:见文本]是随机时这些算法的平均性能。我们的第一个结果比较了[Formula: see text]和[Formula: see text],结果显示平均而言,[Formula: see text]产生了更多的匹配。这个结果适用于有限图(与之前的渐近结果相反),也适用于“多对一”匹配,其中[公式:见文本]中的每个顶点可以与[公式:见文本]中的多个顶点匹配。我们的第二个结果比较了[Formula: see text]和[Formula: see text],结果表明[Formula: see text]更好的最坏情况保证并不能转化为更好的平均性能。在“一对一”设置中,[公式:见文本]中的每个顶点只能与[公式:见文本]中的一个顶点匹配,算法会产生相同数量的匹配。当[Formula: see text]中的每个顶点都能与[Formula: see text]中的两个顶点匹配时,产生的匹配数比[Formula: see text]多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greedy Matching in Bipartite Random Graphs
This paper studies the performance of greedy matching algorithms on bipartite graphs [Formula: see text]. We focus primarily on three classical algorithms: [Formula: see text], which sequentially selects random edges from [Formula: see text]; [Formula: see text], which sequentially matches random vertices in [Formula: see text] to random neighbors; and [Formula: see text], which generates a random priority order over vertices in [Formula: see text] and then sequentially matches random vertices in [Formula: see text] to their highest-priority remaining neighbor. Prior work has focused on identifying the worst-case approximation ratio for each algorithm. This guarantee is highest for [Formula: see text] and lowest for [Formula: see text]. Our work instead studies the average performance of these algorithms when the edge set [Formula: see text] is random. Our first result compares [Formula: see text] and [Formula: see text] and shows that on average, [Formula: see text] produces more matches. This result holds for finite graphs (in contrast to previous asymptotic results) and also applies to “many to one” matching in which each vertex in [Formula: see text] can match with multiple vertices in [Formula: see text]. Our second result compares [Formula: see text] and [Formula: see text] and shows that the better worst-case guarantee of [Formula: see text] does not translate into better average performance. In “one to one” settings where each vertex in [Formula: see text] can match with only one vertex in [Formula: see text], the algorithms result in the same number of matches. When each vertex in [Formula: see text] can match with two vertices in [Formula: see text] produces more matches than [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
期刊最新文献
Sharp Waiting-Time Bounds for Multiserver Jobs Asymptotic Optimality of Switched Control Policies in a Simple Parallel Server System Under an Extended Heavy Traffic Condition Distributionally Robust Observable Strategic Queues The BAR Approach for Multiclass Queueing Networks with SBP Service Policies Ergodic Control of Bipartite Matching Queues with Class Change and Matching Failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1