Hong Li, Hongkai Gao, Yanlai Zhou, I. Storteig, L. Nie, N. Sælthun, Chong-yu Xu
{"title":"挪威奥斯陆Grefsen盆地部分分离和联合排水系统的城市洪水模拟","authors":"Hong Li, Hongkai Gao, Yanlai Zhou, I. Storteig, L. Nie, N. Sælthun, Chong-yu Xu","doi":"10.14796/jwmm.c480","DOIUrl":null,"url":null,"abstract":"The Storm Water Management Model (SWMM) has been globally used for stormwater management. However, the calibration and evaluation of SWMM for historical rainfall–runoff events in partially separated and combined drainage systems is rarely reported in Norway. In this study, we employed SWMM for the Grefsen catchment in Oslo, Norway. The main problem in the Grefsen basin is combined sewer overflow. We calibrated the model parameters based on 32 rainfall–runoff events and evaluated the calibrations using four indicators: Nash–Sutcliffe efficiency, percentage bias, and continuity errors for runoff and flow. There were 32 successful calibrations using Nash–Sutcliffe efficiency, 30 successful calibrations using percentage bias, 32 successful calibrations using continuity error runoff, and four successful calibrations using continuity error flow. SWMM can well simulate the dynamics of hydrological and hydraulic systems in this catchment. Among the 124 validations, there were 88 successful simulations using Nash–Sutcliffe efficiency, 35 successful simulations using percentage bias, 124 successful simulations using continuity error for runoff, and 62 successful simulations using continuity error for flow. The results show that percentage bias and continuity error flow are the critical indicators for model calibration. This study reveals the large uncertainty caused by calibration and validation criteria, and highlights the importance of considering model computation error.","PeriodicalId":43297,"journal":{"name":"Journal of Water Management Modeling","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Urban Flood Modeling of a Partially Separated and Combined Drainage System in the Grefsen Basin in Oslo, Norway\",\"authors\":\"Hong Li, Hongkai Gao, Yanlai Zhou, I. Storteig, L. Nie, N. Sælthun, Chong-yu Xu\",\"doi\":\"10.14796/jwmm.c480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Storm Water Management Model (SWMM) has been globally used for stormwater management. However, the calibration and evaluation of SWMM for historical rainfall–runoff events in partially separated and combined drainage systems is rarely reported in Norway. In this study, we employed SWMM for the Grefsen catchment in Oslo, Norway. The main problem in the Grefsen basin is combined sewer overflow. We calibrated the model parameters based on 32 rainfall–runoff events and evaluated the calibrations using four indicators: Nash–Sutcliffe efficiency, percentage bias, and continuity errors for runoff and flow. There were 32 successful calibrations using Nash–Sutcliffe efficiency, 30 successful calibrations using percentage bias, 32 successful calibrations using continuity error runoff, and four successful calibrations using continuity error flow. SWMM can well simulate the dynamics of hydrological and hydraulic systems in this catchment. Among the 124 validations, there were 88 successful simulations using Nash–Sutcliffe efficiency, 35 successful simulations using percentage bias, 124 successful simulations using continuity error for runoff, and 62 successful simulations using continuity error for flow. The results show that percentage bias and continuity error flow are the critical indicators for model calibration. This study reveals the large uncertainty caused by calibration and validation criteria, and highlights the importance of considering model computation error.\",\"PeriodicalId\":43297,\"journal\":{\"name\":\"Journal of Water Management Modeling\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Management Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14796/jwmm.c480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Management Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14796/jwmm.c480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Urban Flood Modeling of a Partially Separated and Combined Drainage System in the Grefsen Basin in Oslo, Norway
The Storm Water Management Model (SWMM) has been globally used for stormwater management. However, the calibration and evaluation of SWMM for historical rainfall–runoff events in partially separated and combined drainage systems is rarely reported in Norway. In this study, we employed SWMM for the Grefsen catchment in Oslo, Norway. The main problem in the Grefsen basin is combined sewer overflow. We calibrated the model parameters based on 32 rainfall–runoff events and evaluated the calibrations using four indicators: Nash–Sutcliffe efficiency, percentage bias, and continuity errors for runoff and flow. There were 32 successful calibrations using Nash–Sutcliffe efficiency, 30 successful calibrations using percentage bias, 32 successful calibrations using continuity error runoff, and four successful calibrations using continuity error flow. SWMM can well simulate the dynamics of hydrological and hydraulic systems in this catchment. Among the 124 validations, there were 88 successful simulations using Nash–Sutcliffe efficiency, 35 successful simulations using percentage bias, 124 successful simulations using continuity error for runoff, and 62 successful simulations using continuity error for flow. The results show that percentage bias and continuity error flow are the critical indicators for model calibration. This study reveals the large uncertainty caused by calibration and validation criteria, and highlights the importance of considering model computation error.