MicroRNA-34a:动脉炎症的新参与者

I. Badi, A. Raucci
{"title":"MicroRNA-34a:动脉炎症的新参与者","authors":"I. Badi, A. Raucci","doi":"10.14800/RD.753","DOIUrl":null,"url":null,"abstract":"Arterial inflammaging highly contributes to cardiovascular morbidity and mortality. As vascular cells age they become senescent and sustain a chronic low grade sterile inflammation by acquiring a senescence-associated secretory phenotype (SASP). The molecular mechanisms leading to the phenotypic changes affecting endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are also relevant for the pathogenesis of vascular diseases, such as atherosclerosis and hypertension. Therefore, unravelling the etiology of vascular inflammaging becomes of crucial importance. MicroRNAs (miRNAs) are small non-coding negative post-transcriptional regulator that are emerging as promising drug targets. MicroRNA-34a (miR-34a) had been implicated in tissues aging and endothelial and endothelial progenitor cells senescence. Our recent work showed that this miRNA is upregulated in aged mouse aortas as well as in senescent VSMCs. Conversely, its target SIRT1 is downregulated in the same specimens. We also found that miR-34a can inhibit VSMCs proliferation and induce VSMCs senescence, the latter by the direct regulation of SIRT1. Notably, for the first time, we demonstrated that miR-34a is also able to modulate the SASP by inducing the transcriptional expression of a subset of pro-inflammatory factors in a SIRT1-independent manner. These data support a model in which the age-dependent upregulation of miR-34a, by affecting senescence and inflammation of vascular cells, could play a causal role to arterial dysfunctions. Hence, further studies are necessary to unravel miR-34a-dependent mechanisms leading to arterial inflammaging in order to develop an effective strategy to age-related cardiovascular complications.","PeriodicalId":90965,"journal":{"name":"RNA & disease (Houston, Tex.)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MicroRNA-34a: a new player in arterial inflammaging\",\"authors\":\"I. Badi, A. Raucci\",\"doi\":\"10.14800/RD.753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arterial inflammaging highly contributes to cardiovascular morbidity and mortality. As vascular cells age they become senescent and sustain a chronic low grade sterile inflammation by acquiring a senescence-associated secretory phenotype (SASP). The molecular mechanisms leading to the phenotypic changes affecting endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are also relevant for the pathogenesis of vascular diseases, such as atherosclerosis and hypertension. Therefore, unravelling the etiology of vascular inflammaging becomes of crucial importance. MicroRNAs (miRNAs) are small non-coding negative post-transcriptional regulator that are emerging as promising drug targets. MicroRNA-34a (miR-34a) had been implicated in tissues aging and endothelial and endothelial progenitor cells senescence. Our recent work showed that this miRNA is upregulated in aged mouse aortas as well as in senescent VSMCs. Conversely, its target SIRT1 is downregulated in the same specimens. We also found that miR-34a can inhibit VSMCs proliferation and induce VSMCs senescence, the latter by the direct regulation of SIRT1. Notably, for the first time, we demonstrated that miR-34a is also able to modulate the SASP by inducing the transcriptional expression of a subset of pro-inflammatory factors in a SIRT1-independent manner. These data support a model in which the age-dependent upregulation of miR-34a, by affecting senescence and inflammation of vascular cells, could play a causal role to arterial dysfunctions. Hence, further studies are necessary to unravel miR-34a-dependent mechanisms leading to arterial inflammaging in order to develop an effective strategy to age-related cardiovascular complications.\",\"PeriodicalId\":90965,\"journal\":{\"name\":\"RNA & disease (Houston, Tex.)\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA & disease (Houston, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/RD.753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA & disease (Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/RD.753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动脉炎症是心血管疾病发病率和死亡率的重要因素。随着血管细胞的老化,它们变得衰老,并通过获得衰老相关的分泌表型(SASP)来维持慢性低度无菌炎症。导致内皮细胞(ECs)和血管平滑肌细胞(VSMCs)表型变化的分子机制也与动脉粥样硬化和高血压等血管疾病的发病机制有关。因此,揭示血管炎症的病因变得至关重要。MicroRNAs (miRNAs)是一种小的非编码负转录后调节剂,正在成为有希望的药物靶点。MicroRNA-34a (miR-34a)与组织衰老、内皮细胞和内皮祖细胞衰老有关。我们最近的工作表明,这种miRNA在老年小鼠主动脉和衰老的VSMCs中上调。相反,其靶SIRT1在相同的标本中下调。我们还发现miR-34a可以抑制VSMCs的增殖并诱导VSMCs衰老,后者是通过直接调控SIRT1实现的。值得注意的是,我们首次证明了miR-34a也能够通过以sirt1独立的方式诱导一组促炎因子的转录表达来调节SASP。这些数据支持一个模型,即miR-34a的年龄依赖性上调,通过影响血管细胞的衰老和炎症,可能对动脉功能障碍起因果作用。因此,有必要进一步研究mir -34a依赖性导致动脉炎症的机制,以制定有效的策略来应对与年龄相关的心血管并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MicroRNA-34a: a new player in arterial inflammaging
Arterial inflammaging highly contributes to cardiovascular morbidity and mortality. As vascular cells age they become senescent and sustain a chronic low grade sterile inflammation by acquiring a senescence-associated secretory phenotype (SASP). The molecular mechanisms leading to the phenotypic changes affecting endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are also relevant for the pathogenesis of vascular diseases, such as atherosclerosis and hypertension. Therefore, unravelling the etiology of vascular inflammaging becomes of crucial importance. MicroRNAs (miRNAs) are small non-coding negative post-transcriptional regulator that are emerging as promising drug targets. MicroRNA-34a (miR-34a) had been implicated in tissues aging and endothelial and endothelial progenitor cells senescence. Our recent work showed that this miRNA is upregulated in aged mouse aortas as well as in senescent VSMCs. Conversely, its target SIRT1 is downregulated in the same specimens. We also found that miR-34a can inhibit VSMCs proliferation and induce VSMCs senescence, the latter by the direct regulation of SIRT1. Notably, for the first time, we demonstrated that miR-34a is also able to modulate the SASP by inducing the transcriptional expression of a subset of pro-inflammatory factors in a SIRT1-independent manner. These data support a model in which the age-dependent upregulation of miR-34a, by affecting senescence and inflammation of vascular cells, could play a causal role to arterial dysfunctions. Hence, further studies are necessary to unravel miR-34a-dependent mechanisms leading to arterial inflammaging in order to develop an effective strategy to age-related cardiovascular complications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Analysis of RNA Exosome Subunit Transcript Abundance Across Tissues: Implications for Neurological Disease Pathogenesis Modeling Pathogenic Variants in the RNA Exosome. Long Non-coding RNA Landscape in Colorectal Cancer MicroRNA-7: A critical sensitizer for TRAIL sensitivity in glioblastoma cells Implication of obesity-induced miR-96 in hepatic insulin resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1