头盔在减缓爆炸中的作用:来自PMHS替代物实验的见解

S. Ganpule, R. Salzar, B. Perry, N. Chandra
{"title":"头盔在减缓爆炸中的作用:来自PMHS替代物实验的见解","authors":"S. Ganpule, R. Salzar, B. Perry, N. Chandra","doi":"10.1504/IJECB.2016.10002680","DOIUrl":null,"url":null,"abstract":"Blast induced traumatic brain injury (bTBI) has emerged as the most significant injury to war fighters in recent conflicts. Interaction of the blast wave with the head and helmet are not well understood. In this work, the effects of blast were investigated on the post-mortem human subject (PMHS) head using a compression driven shock tube. The results suggest that the evolution of intracranial pressure profiles is strongly governed by the wave propagation through skin-skull-brain parenchyma. It is also observed that the sinus cavities naturally attenuate the blast overpressure. Performance of two helmet configurations (padded and suspension) in mitigating the blast is also evaluated. The results suggest that the amount of mitigation offered by each helmet varies with the helmet configuration. For helmets with the suspension system, the blast wave is intensified beneath the helmet. Further, the degree of blast wave mitigation is affected by the morphology of the PMHS itself. Overall, these results suggest that the blast wave interacts with the head and the helmet in a complex manner and these interaction effects must be taken into account while designing strategies for protection of the head against the blast.","PeriodicalId":90184,"journal":{"name":"International journal of experimental and computational biomechanics","volume":"4 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Role of helmets in blast mitigation: insights from experiments on PMHS surrogate\",\"authors\":\"S. Ganpule, R. Salzar, B. Perry, N. Chandra\",\"doi\":\"10.1504/IJECB.2016.10002680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blast induced traumatic brain injury (bTBI) has emerged as the most significant injury to war fighters in recent conflicts. Interaction of the blast wave with the head and helmet are not well understood. In this work, the effects of blast were investigated on the post-mortem human subject (PMHS) head using a compression driven shock tube. The results suggest that the evolution of intracranial pressure profiles is strongly governed by the wave propagation through skin-skull-brain parenchyma. It is also observed that the sinus cavities naturally attenuate the blast overpressure. Performance of two helmet configurations (padded and suspension) in mitigating the blast is also evaluated. The results suggest that the amount of mitigation offered by each helmet varies with the helmet configuration. For helmets with the suspension system, the blast wave is intensified beneath the helmet. Further, the degree of blast wave mitigation is affected by the morphology of the PMHS itself. Overall, these results suggest that the blast wave interacts with the head and the helmet in a complex manner and these interaction effects must be taken into account while designing strategies for protection of the head against the blast.\",\"PeriodicalId\":90184,\"journal\":{\"name\":\"International journal of experimental and computational biomechanics\",\"volume\":\"4 1\",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental and computational biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJECB.2016.10002680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental and computational biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJECB.2016.10002680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在最近的冲突中,爆炸引起的创伤性脑损伤(bTBI)已成为战争人员最严重的伤害。爆炸冲击波与头部和头盔的相互作用尚不清楚。在这项工作中,使用压缩驱动激波管研究了爆炸对死后人类受试者(PMHS)头部的影响。结果表明,颅内压谱的演变在很大程度上受脑波通过皮肤-颅骨-脑实质的传播控制。还观察到,窦腔自然地减弱了爆炸超压。并对两种头盔结构(衬垫式和悬挂式)的防爆性能进行了评价。结果表明,每个头盔提供的缓解量随头盔配置而变化。对于带有悬挂系统的头盔,冲击波在头盔下方被强化。此外,PMHS本身的形态也会影响爆炸波减缓的程度。总的来说,这些结果表明,冲击波与头部和头盔的相互作用是一种复杂的方式,在设计保护头部免受爆炸伤害的策略时,必须考虑这些相互作用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of helmets in blast mitigation: insights from experiments on PMHS surrogate
Blast induced traumatic brain injury (bTBI) has emerged as the most significant injury to war fighters in recent conflicts. Interaction of the blast wave with the head and helmet are not well understood. In this work, the effects of blast were investigated on the post-mortem human subject (PMHS) head using a compression driven shock tube. The results suggest that the evolution of intracranial pressure profiles is strongly governed by the wave propagation through skin-skull-brain parenchyma. It is also observed that the sinus cavities naturally attenuate the blast overpressure. Performance of two helmet configurations (padded and suspension) in mitigating the blast is also evaluated. The results suggest that the amount of mitigation offered by each helmet varies with the helmet configuration. For helmets with the suspension system, the blast wave is intensified beneath the helmet. Further, the degree of blast wave mitigation is affected by the morphology of the PMHS itself. Overall, these results suggest that the blast wave interacts with the head and the helmet in a complex manner and these interaction effects must be taken into account while designing strategies for protection of the head against the blast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Model for the Roles of Actin and Myosin in Adjustable Preload Tension and Acute Length Adaption Finite element analysis for knee implants with suitable material combinations Non-Newtonian blood flow and coupled blood-wall oxygen mass transport in a 180° curved artery Effects of athletic footwear on plantar force during rope skipping Analysis on the gait of lower limbs in different walking speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1