基于模块化牵引车辆的组合单元运动稳定性估计。

Q2 Agricultural and Biological Sciences Agronomy research Pub Date : 2020-01-01 DOI:10.15159/AR.20.183
V. Bulgakov, I. Holovach, V. Nadykto, O. Parakhin, H. Kaletnik, L. Shymko, J. Olt
{"title":"基于模块化牵引车辆的组合单元运动稳定性估计。","authors":"V. Bulgakov, I. Holovach, V. Nadykto, O. Parakhin, H. Kaletnik, L. Shymko, J. Olt","doi":"10.15159/AR.20.183","DOIUrl":null,"url":null,"abstract":"One of the promising ways of efficiently applying high power intensity tractors is their design and utilisation in the form of modular traction vehicles comprising two modules: the power module and the process module. In order to provide for the sufficient manoeuvrability of the modular traction vehicle, when its process module passes a turn, the latter is equipped with vertical and horizontal hinge joints. The freedom of the process module’s rotation with respect to the power module in the horizontal plane through the agency of the above-mentioned vertical hinge joint is restrained by a hydraulic cylinder, in which the chambers above and below the piston are connected via a throttle valve with a hydraulic resistance coefficient of about 1.03×10 N m s rad. This paper is concerned with the theoretical and experimental research into the stability of motion (on turn spaces as well as in the transport mode) of a modular combined unit, when its velocity changes and/or the slip resistance coefficient of the tyres on the wheels of the process module, in which the hydraulic cylinder is equipped with a throttle valve with the above-mentioned hydraulic resistance coefficient, changes.","PeriodicalId":7924,"journal":{"name":"Agronomy research","volume":"38 1","pages":"2340-2352"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion stability estimation for modular traction vehicle-based combined unit.\",\"authors\":\"V. Bulgakov, I. Holovach, V. Nadykto, O. Parakhin, H. Kaletnik, L. Shymko, J. Olt\",\"doi\":\"10.15159/AR.20.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the promising ways of efficiently applying high power intensity tractors is their design and utilisation in the form of modular traction vehicles comprising two modules: the power module and the process module. In order to provide for the sufficient manoeuvrability of the modular traction vehicle, when its process module passes a turn, the latter is equipped with vertical and horizontal hinge joints. The freedom of the process module’s rotation with respect to the power module in the horizontal plane through the agency of the above-mentioned vertical hinge joint is restrained by a hydraulic cylinder, in which the chambers above and below the piston are connected via a throttle valve with a hydraulic resistance coefficient of about 1.03×10 N m s rad. This paper is concerned with the theoretical and experimental research into the stability of motion (on turn spaces as well as in the transport mode) of a modular combined unit, when its velocity changes and/or the slip resistance coefficient of the tyres on the wheels of the process module, in which the hydraulic cylinder is equipped with a throttle valve with the above-mentioned hydraulic resistance coefficient, changes.\",\"PeriodicalId\":7924,\"journal\":{\"name\":\"Agronomy research\",\"volume\":\"38 1\",\"pages\":\"2340-2352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15159/AR.20.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15159/AR.20.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

高效应用高功率强度牵引车的一种有前途的方法是采用模块化牵引车辆的形式进行设计和利用,包括两个模块:动力模块和过程模块。为了提供模块化牵引车辆足够的机动性,当其工艺模块通过一个转弯时,后者配备了垂直和水平铰链接头。通过上述垂直铰链关节的作用,工艺模块相对于动力模块在水平面上的旋转自由度受到液压缸的约束;其中活塞上下腔室通过节流阀连接,节流阀的水力阻力系数约为1.03×10 N m s rad。本文对模块化组合单元的运动稳定性(转弯空间和运输模式)进行了理论和实验研究,当其速度发生变化时和/或过程模块车轮上轮胎的防滑系数。其中液压缸内装有节流阀,随着上述液压阻力系数的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion stability estimation for modular traction vehicle-based combined unit.
One of the promising ways of efficiently applying high power intensity tractors is their design and utilisation in the form of modular traction vehicles comprising two modules: the power module and the process module. In order to provide for the sufficient manoeuvrability of the modular traction vehicle, when its process module passes a turn, the latter is equipped with vertical and horizontal hinge joints. The freedom of the process module’s rotation with respect to the power module in the horizontal plane through the agency of the above-mentioned vertical hinge joint is restrained by a hydraulic cylinder, in which the chambers above and below the piston are connected via a throttle valve with a hydraulic resistance coefficient of about 1.03×10 N m s rad. This paper is concerned with the theoretical and experimental research into the stability of motion (on turn spaces as well as in the transport mode) of a modular combined unit, when its velocity changes and/or the slip resistance coefficient of the tyres on the wheels of the process module, in which the hydraulic cylinder is equipped with a throttle valve with the above-mentioned hydraulic resistance coefficient, changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy research
Agronomy research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Agronomy Research is a peer-reviewed international Journal intended for publication of broad-spectrum original articles, reviews and short communications on actual problems of modern biosystems engineering including crop and animal science, genetics, economics, farm- and production engineering, environmental aspects, agro-ecology, renewable energy and bioenergy etc. in the temperate regions of the world.
期刊最新文献
Adaptation of various maize hybrids when grown for biomass New device for air disinfection with a shielded uv radiation and ozone Genetic components for fodder yield and agronomic characters in maize lines Intra-annual height growth dynamics of Scots and lodgepole pines and its relationship with meteorological parameters in central Latvia. Insects in chicken nutrition. A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1