{"title":"在聚类数据中使用复合似然的多重比较","authors":"M. Azadbakhsh, Xin Gao, H. Jankowski","doi":"10.1515/ijb-2016-0004","DOIUrl":null,"url":null,"abstract":"Abstract We study the problem of multiple hypothesis testing for correlated clustered data. As the existing multiple comparison procedures based on maximum likelihood estimation could be computationally intensive, we propose to construct multiple comparison procedures based on composite likelihood method. The new test statistics account for the correlation structure within the clusters and are computationally convenient to compute. Simulation studies show that the composite likelihood based procedures maintain good control of the familywise type I error rate in the presence of intra-cluster correlation, whereas ignoring the correlation leads to erratic performance.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2014-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0004","citationCount":"2","resultStr":"{\"title\":\"Multiple Comparisons Using Composite Likelihood in Clustered Data\",\"authors\":\"M. Azadbakhsh, Xin Gao, H. Jankowski\",\"doi\":\"10.1515/ijb-2016-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the problem of multiple hypothesis testing for correlated clustered data. As the existing multiple comparison procedures based on maximum likelihood estimation could be computationally intensive, we propose to construct multiple comparison procedures based on composite likelihood method. The new test statistics account for the correlation structure within the clusters and are computationally convenient to compute. Simulation studies show that the composite likelihood based procedures maintain good control of the familywise type I error rate in the presence of intra-cluster correlation, whereas ignoring the correlation leads to erratic performance.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2016-0004\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2016-0004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple Comparisons Using Composite Likelihood in Clustered Data
Abstract We study the problem of multiple hypothesis testing for correlated clustered data. As the existing multiple comparison procedures based on maximum likelihood estimation could be computationally intensive, we propose to construct multiple comparison procedures based on composite likelihood method. The new test statistics account for the correlation structure within the clusters and are computationally convenient to compute. Simulation studies show that the composite likelihood based procedures maintain good control of the familywise type I error rate in the presence of intra-cluster correlation, whereas ignoring the correlation leads to erratic performance.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.