{"title":"利用K-means和距离矩阵对学生学习成绩数据集进行kNN算法分类预处理","authors":"Sugriyono Sugriyono, M. U. Siregar","doi":"10.14710/jtsiskom.2020.13874","DOIUrl":null,"url":null,"abstract":"The existence of outliers in the dataset can cause low accuracy in a classification process. Outliers in the dataset can be removed from a preprocessing stage of classification algorithms. Clustering can be used as an outlier detection method. This study applies K-means and a distance matrix to detect outliers and remove them from datasets with class labels. This research used a dataset of students’ academic performance totaling 6847 instances, having 18 attributes and 3 class labels. Preprocessing applies the K-means method to get centroid in each class. The distance matrix is used to evaluate the distance of instance to the centroid. Outliers, which are a different class, will be removed from the dataset. This preprocessing improves the classification accuracy of the kNN algorithm. Data without preprocessing has 72.28 % accuracy, preprocessed data using K-means with Euclidean has 98.42 % accuracy (an increase of 26.14 %), while the K-means with Manhattan has 97.76 % accuracy (an increase of 25.48 %).","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"465 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset\",\"authors\":\"Sugriyono Sugriyono, M. U. Siregar\",\"doi\":\"10.14710/jtsiskom.2020.13874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of outliers in the dataset can cause low accuracy in a classification process. Outliers in the dataset can be removed from a preprocessing stage of classification algorithms. Clustering can be used as an outlier detection method. This study applies K-means and a distance matrix to detect outliers and remove them from datasets with class labels. This research used a dataset of students’ academic performance totaling 6847 instances, having 18 attributes and 3 class labels. Preprocessing applies the K-means method to get centroid in each class. The distance matrix is used to evaluate the distance of instance to the centroid. Outliers, which are a different class, will be removed from the dataset. This preprocessing improves the classification accuracy of the kNN algorithm. Data without preprocessing has 72.28 % accuracy, preprocessed data using K-means with Euclidean has 98.42 % accuracy (an increase of 26.14 %), while the K-means with Manhattan has 97.76 % accuracy (an increase of 25.48 %).\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"465 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.2020.13874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2020.13874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset
The existence of outliers in the dataset can cause low accuracy in a classification process. Outliers in the dataset can be removed from a preprocessing stage of classification algorithms. Clustering can be used as an outlier detection method. This study applies K-means and a distance matrix to detect outliers and remove them from datasets with class labels. This research used a dataset of students’ academic performance totaling 6847 instances, having 18 attributes and 3 class labels. Preprocessing applies the K-means method to get centroid in each class. The distance matrix is used to evaluate the distance of instance to the centroid. Outliers, which are a different class, will be removed from the dataset. This preprocessing improves the classification accuracy of the kNN algorithm. Data without preprocessing has 72.28 % accuracy, preprocessed data using K-means with Euclidean has 98.42 % accuracy (an increase of 26.14 %), while the K-means with Manhattan has 97.76 % accuracy (an increase of 25.48 %).