Maritza Elizabeth Barriga Sanchez, Carlos Francisco Castro Rumiche, Gloria Cesia Sanchez Gonzales, Maria Rosales-Hartshorn3
{"title":"超临界CO2法提取葡萄籽油的功能及化学性质研究","authors":"Maritza Elizabeth Barriga Sanchez, Carlos Francisco Castro Rumiche, Gloria Cesia Sanchez Gonzales, Maria Rosales-Hartshorn3","doi":"10.15446/rev.colomb.quim.v50n3.95469","DOIUrl":null,"url":null,"abstract":"Grape seed oil, which is extracted with highly toxic organic solvents that are harmful to human health, is produced from tons of grape pomace waste, generated during winemaking. Sometimes, this waste is used to make compost or is burnt, which causes environmental contamination. The functional qualities, antioxidant capacity (AC), α-tocopherol and total phenolic compounds content (TPC) of Black Borgoña (Vitis labrusca) grape seed oil, extracted by supercritical CO2, were evaluated. The high content of linoleic acid (w-6) and monounsaturated fatty acids contributed to the beneficial effect on the functional quality indices, which were 0.20, 0.23, 11.80 for IA, IT and H:H, respectively. In addition, a POV of 6.23 ± 0.08 milliequivalents of peroxide/kg oil and an anisidine index of 2.70 ± 0.05 indicated a good quality oil. Also, a high concentration of α-tocopherol (9.82 ± 0.02 mg/100 g oil) and a high TPC (114.14 ± 3.24 mg GAE/kg oil) were obtained. This study demonstrated that supercritical CO2 extraction is a suitable method for the delivery of a high-quality grape seed oil.\n ","PeriodicalId":43662,"journal":{"name":"Revista Colombiana de Quimica","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Functional and chemical qualities of Vitis labrusca grape seed oil extracted by supercritical CO2\",\"authors\":\"Maritza Elizabeth Barriga Sanchez, Carlos Francisco Castro Rumiche, Gloria Cesia Sanchez Gonzales, Maria Rosales-Hartshorn3\",\"doi\":\"10.15446/rev.colomb.quim.v50n3.95469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grape seed oil, which is extracted with highly toxic organic solvents that are harmful to human health, is produced from tons of grape pomace waste, generated during winemaking. Sometimes, this waste is used to make compost or is burnt, which causes environmental contamination. The functional qualities, antioxidant capacity (AC), α-tocopherol and total phenolic compounds content (TPC) of Black Borgoña (Vitis labrusca) grape seed oil, extracted by supercritical CO2, were evaluated. The high content of linoleic acid (w-6) and monounsaturated fatty acids contributed to the beneficial effect on the functional quality indices, which were 0.20, 0.23, 11.80 for IA, IT and H:H, respectively. In addition, a POV of 6.23 ± 0.08 milliequivalents of peroxide/kg oil and an anisidine index of 2.70 ± 0.05 indicated a good quality oil. Also, a high concentration of α-tocopherol (9.82 ± 0.02 mg/100 g oil) and a high TPC (114.14 ± 3.24 mg GAE/kg oil) were obtained. This study demonstrated that supercritical CO2 extraction is a suitable method for the delivery of a high-quality grape seed oil.\\n \",\"PeriodicalId\":43662,\"journal\":{\"name\":\"Revista Colombiana de Quimica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Quimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/rev.colomb.quim.v50n3.95469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rev.colomb.quim.v50n3.95469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Functional and chemical qualities of Vitis labrusca grape seed oil extracted by supercritical CO2
Grape seed oil, which is extracted with highly toxic organic solvents that are harmful to human health, is produced from tons of grape pomace waste, generated during winemaking. Sometimes, this waste is used to make compost or is burnt, which causes environmental contamination. The functional qualities, antioxidant capacity (AC), α-tocopherol and total phenolic compounds content (TPC) of Black Borgoña (Vitis labrusca) grape seed oil, extracted by supercritical CO2, were evaluated. The high content of linoleic acid (w-6) and monounsaturated fatty acids contributed to the beneficial effect on the functional quality indices, which were 0.20, 0.23, 11.80 for IA, IT and H:H, respectively. In addition, a POV of 6.23 ± 0.08 milliequivalents of peroxide/kg oil and an anisidine index of 2.70 ± 0.05 indicated a good quality oil. Also, a high concentration of α-tocopherol (9.82 ± 0.02 mg/100 g oil) and a high TPC (114.14 ± 3.24 mg GAE/kg oil) were obtained. This study demonstrated that supercritical CO2 extraction is a suitable method for the delivery of a high-quality grape seed oil.
期刊介绍:
The Revista Colombiana de Química - Colombian Journal of Chemistry (Rev. Colomb. Quim.) Is a peer-reviewed scientific journal of the Department of Chemistry, Faculty of Sciences of the Universidad Nacional de Colombia, Bogotá. It currently publishes three volumes per year: January-April, May-August and September-December. All the content published by the Journal (available online) is under a Creative Commons attribution license type BY 4.0, that allows any person or entity in the world to freely access the content, share it, download it, adapt it or make derivative works without any restriction, provided that it adequately indicates the credit to the authors and to the Colombian Journal of Chemistry.