巴西全球导航卫星系统电离层不规则监测网络回顾

IF 0.9 Q3 ENGINEERING, AEROSPACE Journal of Aerospace Technology and Management Pub Date : 2023-03-06 DOI:10.1590/jatm.v15.1288
E. R. Paula, J. Monico, Ítalo Tsuchiya, C. Valladares, S. Costa, L. Marini-Pereira, B. Vani, A. Moraes
{"title":"巴西全球导航卫星系统电离层不规则监测网络回顾","authors":"E. R. Paula, J. Monico, Ítalo Tsuchiya, C. Valladares, S. Costa, L. Marini-Pereira, B. Vani, A. Moraes","doi":"10.1590/jatm.v15.1288","DOIUrl":null,"url":null,"abstract":"The use of Global Navigation Satellite System (GNSS) for air and terrestrial navigation and for many applications is increasing in the last decades. However, the Earth’s ionosphere causes GNSS signal delay due to the total electron content (TEC) and scintillation in the signal phase and amplitude. This scintillation can give rise to deleterious effects in the GNSS positioning. So, it is important to assess the effects of the ionosphere over the GNSS signal. To achieve this goal, it is necessary to have a large spatial and temporal coverage of data from many different sounders, being the GNSS receivers of great importance due to their global coverage and availability. In this work, we present a retrospective of the scintillation monitoring networks in Brazil and their characteristics. As the RBMC network managed by the IBGE provides TEC and as rate of TEC index (ROTI) is well correlated with ionospheric irregularities, we present also the RBMC network description. These RBMC GNSS receivers provide data in regions with scarcity of scintillation monitors. The description of the Ionospheric Scintillation Monitoring Receivers (ISMR) Query Tool, that is a web software that has been supporting research on the ISMR data, is also presented.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Retrospective of Global Navigation Satellite System Ionospheric Irregularities Monitoring Networks in Brazil\",\"authors\":\"E. R. Paula, J. Monico, Ítalo Tsuchiya, C. Valladares, S. Costa, L. Marini-Pereira, B. Vani, A. Moraes\",\"doi\":\"10.1590/jatm.v15.1288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Global Navigation Satellite System (GNSS) for air and terrestrial navigation and for many applications is increasing in the last decades. However, the Earth’s ionosphere causes GNSS signal delay due to the total electron content (TEC) and scintillation in the signal phase and amplitude. This scintillation can give rise to deleterious effects in the GNSS positioning. So, it is important to assess the effects of the ionosphere over the GNSS signal. To achieve this goal, it is necessary to have a large spatial and temporal coverage of data from many different sounders, being the GNSS receivers of great importance due to their global coverage and availability. In this work, we present a retrospective of the scintillation monitoring networks in Brazil and their characteristics. As the RBMC network managed by the IBGE provides TEC and as rate of TEC index (ROTI) is well correlated with ionospheric irregularities, we present also the RBMC network description. These RBMC GNSS receivers provide data in regions with scarcity of scintillation monitors. The description of the Ionospheric Scintillation Monitoring Receivers (ISMR) Query Tool, that is a web software that has been supporting research on the ISMR data, is also presented.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/jatm.v15.1288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/jatm.v15.1288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 6

摘要

在过去几十年中,全球导航卫星系统(GNSS)用于空中和地面导航以及许多应用的使用正在增加。然而,地球电离层由于总电子含量(TEC)和信号相位和幅度上的闪烁而导致GNSS信号延迟。这种闪烁会对GNSS定位产生有害影响。因此,评估电离层对GNSS信号的影响是非常重要的。为了实现这一目标,有必要对来自许多不同探测仪的数据进行大的时空覆盖,因为GNSS接收器由于其全球覆盖和可用性而非常重要。在这项工作中,我们回顾了巴西的闪烁监测网络及其特点。由于IBGE管理的RBMC网络提供TEC,并且TEC指数速率(ROTI)与电离层不规则性有很好的相关性,因此我们也给出了RBMC网络的描述。这些RBMC GNSS接收机在闪烁监测仪缺乏的地区提供数据。介绍了电离层闪烁监测接收机(ISMR)查询工具,这是一个支持ISMR数据研究的网络软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Retrospective of Global Navigation Satellite System Ionospheric Irregularities Monitoring Networks in Brazil
The use of Global Navigation Satellite System (GNSS) for air and terrestrial navigation and for many applications is increasing in the last decades. However, the Earth’s ionosphere causes GNSS signal delay due to the total electron content (TEC) and scintillation in the signal phase and amplitude. This scintillation can give rise to deleterious effects in the GNSS positioning. So, it is important to assess the effects of the ionosphere over the GNSS signal. To achieve this goal, it is necessary to have a large spatial and temporal coverage of data from many different sounders, being the GNSS receivers of great importance due to their global coverage and availability. In this work, we present a retrospective of the scintillation monitoring networks in Brazil and their characteristics. As the RBMC network managed by the IBGE provides TEC and as rate of TEC index (ROTI) is well correlated with ionospheric irregularities, we present also the RBMC network description. These RBMC GNSS receivers provide data in regions with scarcity of scintillation monitors. The description of the Ionospheric Scintillation Monitoring Receivers (ISMR) Query Tool, that is a web software that has been supporting research on the ISMR data, is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
审稿时长
20 weeks
期刊最新文献
Influence of 2D and 3D Arrangements of Aramid Fibers on the Dart Drop Test of Epoxy Composites Smart Cabin Design Concept for Regional Aircraft: Challenges, Future Aspects & Requirements Smart Cabin Design Concept for Regional Aircraft: Technologies, Applications & Architecture Formation of a Regionally Oriented Structure and Number of the Airline’s Helicopter Fleet Based on Consumer Preferences of Customers Indirect Connection Analysis Based on Wave-system Structures of Airlines Architecture in Hub Airport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1