{"title":"一种多级序贯系统优化设计方法","authors":"Vahid Bohlouri, M. Zakeri, M. Nosratollahi","doi":"10.1590/jatm.v15.1302","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach in multi-step sequential system optimization (MSSO) to implement a conceptual design for satellite upper stage with a maneuver in the conditions close to reality. In this method of design, there are two main cycles; trajectory optimization cycle and optimal design cycle, each one is correlated to each other in another cycle called configuration. In the trajectory optimization, the optimization objective is to place the upper stage in the destination orbit, using the minimum amount of fuel consumption. In this cycle, a new approach has been introduced for a three-dimensional trajectory using two genetic algorithms inside each other. In addition, selecting the suitable engine is carried out in this cycle. Convergence of design and exclusion of design are carried out in the configuration cycle. Convergence and optimization of subsystems design are carried out in the optimal design cycle. The innovations of this paper are implementation of the design according to multi-step sequential system design in which optimization is performed step by step, and orbital optimization is introduced according to a new approach. Choosing a desirable criterion for optimization process and proper coefficient for convergence in design, are among considerable characteristics of this paper. Validation has been performed using one of the upper stages in the world.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Step Sequential System Optimization Design Method for Upper Stages\",\"authors\":\"Vahid Bohlouri, M. Zakeri, M. Nosratollahi\",\"doi\":\"10.1590/jatm.v15.1302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach in multi-step sequential system optimization (MSSO) to implement a conceptual design for satellite upper stage with a maneuver in the conditions close to reality. In this method of design, there are two main cycles; trajectory optimization cycle and optimal design cycle, each one is correlated to each other in another cycle called configuration. In the trajectory optimization, the optimization objective is to place the upper stage in the destination orbit, using the minimum amount of fuel consumption. In this cycle, a new approach has been introduced for a three-dimensional trajectory using two genetic algorithms inside each other. In addition, selecting the suitable engine is carried out in this cycle. Convergence of design and exclusion of design are carried out in the configuration cycle. Convergence and optimization of subsystems design are carried out in the optimal design cycle. The innovations of this paper are implementation of the design according to multi-step sequential system design in which optimization is performed step by step, and orbital optimization is introduced according to a new approach. Choosing a desirable criterion for optimization process and proper coefficient for convergence in design, are among considerable characteristics of this paper. Validation has been performed using one of the upper stages in the world.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/jatm.v15.1302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/jatm.v15.1302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A Multi-Step Sequential System Optimization Design Method for Upper Stages
This paper proposes a new approach in multi-step sequential system optimization (MSSO) to implement a conceptual design for satellite upper stage with a maneuver in the conditions close to reality. In this method of design, there are two main cycles; trajectory optimization cycle and optimal design cycle, each one is correlated to each other in another cycle called configuration. In the trajectory optimization, the optimization objective is to place the upper stage in the destination orbit, using the minimum amount of fuel consumption. In this cycle, a new approach has been introduced for a three-dimensional trajectory using two genetic algorithms inside each other. In addition, selecting the suitable engine is carried out in this cycle. Convergence of design and exclusion of design are carried out in the configuration cycle. Convergence and optimization of subsystems design are carried out in the optimal design cycle. The innovations of this paper are implementation of the design according to multi-step sequential system design in which optimization is performed step by step, and orbital optimization is introduced according to a new approach. Choosing a desirable criterion for optimization process and proper coefficient for convergence in design, are among considerable characteristics of this paper. Validation has been performed using one of the upper stages in the world.