{"title":"基于单神经元PID和重力补偿的四旋翼无人机位置姿态控制","authors":"Haitao Zhang, L. Yang","doi":"10.1590/jatm.v15.1303","DOIUrl":null,"url":null,"abstract":"Aimed at the deficiency of existing PID controller for quad rotor UAV, a single neuron PID controller with gravity compensation is presented. After using feed forward control to compensate gravity, the position loop adopts PID control to ensure control accuracy, while the attitude loop adopts single neuron control to increase adaptive ability. Then, by using Matlab/simulink simulation software, the position control of quad rotor UAV is carried out, and the simulation result shows, compared with the traditional double closed loop PID controller, the control algorithm based on the Single Neuron adaptive PID with gravity compensation can effectively improve the robustness and adaptability of the quad rotor UAV system.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Position and Attitude Control Based on Single Neuron PID With Gravity Compensation for Quad Rotor UAV\",\"authors\":\"Haitao Zhang, L. Yang\",\"doi\":\"10.1590/jatm.v15.1303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed at the deficiency of existing PID controller for quad rotor UAV, a single neuron PID controller with gravity compensation is presented. After using feed forward control to compensate gravity, the position loop adopts PID control to ensure control accuracy, while the attitude loop adopts single neuron control to increase adaptive ability. Then, by using Matlab/simulink simulation software, the position control of quad rotor UAV is carried out, and the simulation result shows, compared with the traditional double closed loop PID controller, the control algorithm based on the Single Neuron adaptive PID with gravity compensation can effectively improve the robustness and adaptability of the quad rotor UAV system.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/jatm.v15.1303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/jatm.v15.1303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Position and Attitude Control Based on Single Neuron PID With Gravity Compensation for Quad Rotor UAV
Aimed at the deficiency of existing PID controller for quad rotor UAV, a single neuron PID controller with gravity compensation is presented. After using feed forward control to compensate gravity, the position loop adopts PID control to ensure control accuracy, while the attitude loop adopts single neuron control to increase adaptive ability. Then, by using Matlab/simulink simulation software, the position control of quad rotor UAV is carried out, and the simulation result shows, compared with the traditional double closed loop PID controller, the control algorithm based on the Single Neuron adaptive PID with gravity compensation can effectively improve the robustness and adaptability of the quad rotor UAV system.