Si-Hong Liu, Fu-Li Xie, Jian-Wei Zhu, Hui-Hua Xu, Bi-Wen Wu, Jia-Jun Li, Pei-Pei Wang, Yong Wu, Han Yan
{"title":"通过PI3K/AKT/mTOR途径抑制铱(III)多吡啶复合物对骨肉瘤U2OS细胞增殖的作用","authors":"Si-Hong Liu, Fu-Li Xie, Jian-Wei Zhu, Hui-Hua Xu, Bi-Wen Wu, Jia-Jun Li, Pei-Pei Wang, Yong Wu, Han Yan","doi":"10.1007/s11243-023-00546-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, three iridium(III) complexes [Ir(bzq)<sub>2</sub>(NPIP)](PF<sub>6</sub>) (NPIP = 2-nitrophenyl-1<i>H</i>-imidazo[4,5-f][1,10]phenanthroline) <b>(</b>Ir1), [Ir(bzq)<sub>2</sub>(MNPIP)](PF<sub>6</sub>) (MNPIP = 3-nitrophenyl-1<i>H</i>-imidazo[4,5-f][1,10]phenanthroline) (Ir2) and [Ir(bzq)<sub>2</sub>(PNPIP)](PF<sub>6</sub>) (PNPIP = 4-nitrophenyl-1<i>H</i>-imidazo[4,5-f][1,10]phenanthroline) (Ir3) were synthesized and characterization. The cytotoxicity in vitro of the complexes Ir1, Ir2 and Ir3 toward human tibial osteosarcoma cell U2OS, human osteosarcoma cell HOS, human osteoblast-like cells MG-63, and non-cancer cell LO2 was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex <b>Ir1</b> displays high anticancer activity against U2OS cells with a low IC<sub>50</sub> value of 7.4 ± 0.04 μM, while Ir2 and Ir3 show no cytotoxic activity toward the above selected cancer cells. The colonies and wound healing show that Ir1 can effectively inhibit the cell proliferation and migration. The apoptosis was performed using Annex V/propidium iodide (PI) double staining and the obtained results show that Ir1 can induce apoptosis. The cell cycle distribution demonstrates that Ir1 prevents the cell growth at the G0/G1 phase. Ir1 locates at the mitochondria, causes an increase of intracellular ROS levels, induces a decrease of mitochondrial membrane potential. Additionally, Ir1 can cause autophagy, regulate the expression of Bcl-2 family proteins, inhibit the expression of PI3K, AKT, mTOR and p-mTOR. Taken together, Ir1 induces cell death through a ROS-mediated mitochondrial dysfunction and inhibition of PI3K/AKT/mTOR signaling pathway.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"48 5","pages":"331 - 342"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11243-023-00546-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Inhibition of cell proliferation of iridium(III) polypyridyl complexes on osteosarcoma U2OS cells through PI3K/AKT/mTOR pathway\",\"authors\":\"Si-Hong Liu, Fu-Li Xie, Jian-Wei Zhu, Hui-Hua Xu, Bi-Wen Wu, Jia-Jun Li, Pei-Pei Wang, Yong Wu, Han Yan\",\"doi\":\"10.1007/s11243-023-00546-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, three iridium(III) complexes [Ir(bzq)<sub>2</sub>(NPIP)](PF<sub>6</sub>) (NPIP = 2-nitrophenyl-1<i>H</i>-imidazo[4,5-f][1,10]phenanthroline) <b>(</b>Ir1), [Ir(bzq)<sub>2</sub>(MNPIP)](PF<sub>6</sub>) (MNPIP = 3-nitrophenyl-1<i>H</i>-imidazo[4,5-f][1,10]phenanthroline) (Ir2) and [Ir(bzq)<sub>2</sub>(PNPIP)](PF<sub>6</sub>) (PNPIP = 4-nitrophenyl-1<i>H</i>-imidazo[4,5-f][1,10]phenanthroline) (Ir3) were synthesized and characterization. The cytotoxicity in vitro of the complexes Ir1, Ir2 and Ir3 toward human tibial osteosarcoma cell U2OS, human osteosarcoma cell HOS, human osteoblast-like cells MG-63, and non-cancer cell LO2 was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex <b>Ir1</b> displays high anticancer activity against U2OS cells with a low IC<sub>50</sub> value of 7.4 ± 0.04 μM, while Ir2 and Ir3 show no cytotoxic activity toward the above selected cancer cells. The colonies and wound healing show that Ir1 can effectively inhibit the cell proliferation and migration. The apoptosis was performed using Annex V/propidium iodide (PI) double staining and the obtained results show that Ir1 can induce apoptosis. The cell cycle distribution demonstrates that Ir1 prevents the cell growth at the G0/G1 phase. Ir1 locates at the mitochondria, causes an increase of intracellular ROS levels, induces a decrease of mitochondrial membrane potential. Additionally, Ir1 can cause autophagy, regulate the expression of Bcl-2 family proteins, inhibit the expression of PI3K, AKT, mTOR and p-mTOR. Taken together, Ir1 induces cell death through a ROS-mediated mitochondrial dysfunction and inhibition of PI3K/AKT/mTOR signaling pathway.</p></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"48 5\",\"pages\":\"331 - 342\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11243-023-00546-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00546-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00546-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Inhibition of cell proliferation of iridium(III) polypyridyl complexes on osteosarcoma U2OS cells through PI3K/AKT/mTOR pathway
In this article, three iridium(III) complexes [Ir(bzq)2(NPIP)](PF6) (NPIP = 2-nitrophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (Ir1), [Ir(bzq)2(MNPIP)](PF6) (MNPIP = 3-nitrophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (Ir2) and [Ir(bzq)2(PNPIP)](PF6) (PNPIP = 4-nitrophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (Ir3) were synthesized and characterization. The cytotoxicity in vitro of the complexes Ir1, Ir2 and Ir3 toward human tibial osteosarcoma cell U2OS, human osteosarcoma cell HOS, human osteoblast-like cells MG-63, and non-cancer cell LO2 was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex Ir1 displays high anticancer activity against U2OS cells with a low IC50 value of 7.4 ± 0.04 μM, while Ir2 and Ir3 show no cytotoxic activity toward the above selected cancer cells. The colonies and wound healing show that Ir1 can effectively inhibit the cell proliferation and migration. The apoptosis was performed using Annex V/propidium iodide (PI) double staining and the obtained results show that Ir1 can induce apoptosis. The cell cycle distribution demonstrates that Ir1 prevents the cell growth at the G0/G1 phase. Ir1 locates at the mitochondria, causes an increase of intracellular ROS levels, induces a decrease of mitochondrial membrane potential. Additionally, Ir1 can cause autophagy, regulate the expression of Bcl-2 family proteins, inhibit the expression of PI3K, AKT, mTOR and p-mTOR. Taken together, Ir1 induces cell death through a ROS-mediated mitochondrial dysfunction and inhibition of PI3K/AKT/mTOR signaling pathway.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.