一种新型生物活性强玻璃陶瓷在弯曲氧化铝基板上的小梁涂层

Q1 Materials Science Biomedical Glasses Pub Date : 2015-07-17 DOI:10.1515/bglass-2015-0003
F. Baino, C. Vitale-Brovarone
{"title":"一种新型生物活性强玻璃陶瓷在弯曲氧化铝基板上的小梁涂层","authors":"F. Baino, C. Vitale-Brovarone","doi":"10.1515/bglass-2015-0003","DOIUrl":null,"url":null,"abstract":"Abstract In the last few years, optimal fixation of orthopaedic implants evolved to preserve host bone and enhance tissue integration by surface modifications, including the use of coatings with bioactive ceramics. In this work, we fabricated a novel bone-like porous bioactive glass-ceramic coating on curved alumina substrates; good joining between the two components was possible due to the interposition of a glass-derived dense interlayer. The mechanical properties of the porous glass-ceramic, which mimics the 3-D pore architecture of cancellous bone, are adequate for load-bearing applications (compressive strength of 19 MPa and fracture energy around 6.5×10−4 J mm−3, with a total porosity of 62 vol.%). In vitro bioactive behaviour was investigated by testing the samples in simulated body fluid and by evaluating the apatite formation on the surface and pore struts of the trabecular coating, which is a key precondition for in vivo osteointegration. The concepts disclosed in the present study could find interesting application in the context of orthopaedic implants, with particular reference to full-ceramic acetabular cups for hip joint prosthesis.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2015-0003","citationCount":"7","resultStr":"{\"title\":\"Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic\",\"authors\":\"F. Baino, C. Vitale-Brovarone\",\"doi\":\"10.1515/bglass-2015-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the last few years, optimal fixation of orthopaedic implants evolved to preserve host bone and enhance tissue integration by surface modifications, including the use of coatings with bioactive ceramics. In this work, we fabricated a novel bone-like porous bioactive glass-ceramic coating on curved alumina substrates; good joining between the two components was possible due to the interposition of a glass-derived dense interlayer. The mechanical properties of the porous glass-ceramic, which mimics the 3-D pore architecture of cancellous bone, are adequate for load-bearing applications (compressive strength of 19 MPa and fracture energy around 6.5×10−4 J mm−3, with a total porosity of 62 vol.%). In vitro bioactive behaviour was investigated by testing the samples in simulated body fluid and by evaluating the apatite formation on the surface and pore struts of the trabecular coating, which is a key precondition for in vivo osteointegration. The concepts disclosed in the present study could find interesting application in the context of orthopaedic implants, with particular reference to full-ceramic acetabular cups for hip joint prosthesis.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2015-0003\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2015-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2015-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 7

摘要

在过去的几年里,骨科植入物的最佳固定已经发展到通过表面修饰来保护宿主骨和增强组织整合,包括使用生物活性陶瓷涂层。在这项工作中,我们在弯曲的氧化铝衬底上制备了一种新型的骨状多孔生物活性玻璃陶瓷涂层;由于玻璃衍生的致密夹层的插入,两个组件之间的良好连接是可能的。多孔玻璃陶瓷的力学性能,模仿松质骨的三维孔隙结构,足以承载应用(抗压强度为19 MPa,断裂能约6.5×10−4 J mm−3,总孔隙率为62 vol.%)。通过在模拟体液中测试样品,并评估骨小梁涂层表面和孔柱上磷灰石的形成,研究其体外生物活性行为,这是体内骨整合的关键前提。本研究中披露的概念可以在骨科植入物的背景下找到有趣的应用,特别是全陶瓷髋臼杯用于髋关节假体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic
Abstract In the last few years, optimal fixation of orthopaedic implants evolved to preserve host bone and enhance tissue integration by surface modifications, including the use of coatings with bioactive ceramics. In this work, we fabricated a novel bone-like porous bioactive glass-ceramic coating on curved alumina substrates; good joining between the two components was possible due to the interposition of a glass-derived dense interlayer. The mechanical properties of the porous glass-ceramic, which mimics the 3-D pore architecture of cancellous bone, are adequate for load-bearing applications (compressive strength of 19 MPa and fracture energy around 6.5×10−4 J mm−3, with a total porosity of 62 vol.%). In vitro bioactive behaviour was investigated by testing the samples in simulated body fluid and by evaluating the apatite formation on the surface and pore struts of the trabecular coating, which is a key precondition for in vivo osteointegration. The concepts disclosed in the present study could find interesting application in the context of orthopaedic implants, with particular reference to full-ceramic acetabular cups for hip joint prosthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1