新型四环素功能化抗菌生物活性玻璃纳米复合材料

Q1 Materials Science Biomedical Glasses Pub Date : 2015-10-21 DOI:10.1515/bglass-2015-0012
J. Rivadeneira, Gisela M. Luz, M. Audisio, João F. Mano, Alejandro A. Gorustovich
{"title":"新型四环素功能化抗菌生物活性玻璃纳米复合材料","authors":"J. Rivadeneira, Gisela M. Luz, M. Audisio, João F. Mano, Alejandro A. Gorustovich","doi":"10.1515/bglass-2015-0012","DOIUrl":null,"url":null,"abstract":"Abstract To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route. Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2015-0012","citationCount":"9","resultStr":"{\"title\":\"Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride\",\"authors\":\"J. Rivadeneira, Gisela M. Luz, M. Audisio, João F. Mano, Alejandro A. Gorustovich\",\"doi\":\"10.1515/bglass-2015-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route. Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2015-0012\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2015-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2015-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 9

摘要

摘要为了防止伤口感染的高发,可以在复合材料上添加抗菌药物。本研究首次将抗生素盐酸四环素(tetracycline hydrochloride, TC)掺入通过溶胶-凝胶化学途径获得的纳米SiO2-CaOP2O5生物活性玻璃(n-BG)包被的I型胶原膜中。在37°C下,用共沉淀法将涂有n-BG的胶原膜浸入含有0.25、0.75或1.25 mg mL - 1 TC的模拟体液(SBF)中48小时。抗生素在37°C的蒸馏水中释放72小时。复合材料的抗菌活性在体外通过抑菌带试验和平板计数法进行评价。两种不同的金黄色葡萄球菌菌株,金黄色葡萄球菌ATCC29213和金黄色葡萄球菌ATCC25923暴露于生物材料。结果表明,TC的掺入与SBF中TC的初始浓度有关,而与TC的释放无关。生物材料抑制金黄色葡萄球菌生长,尽管所有浓度的效果相似。结果使我们得出结论,这种新的复合材料在预防伤口感染方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride
Abstract To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route. Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1