将微粒生物活性玻璃掺入牙根管密封器

Q1 Materials Science Biomedical Glasses Pub Date : 2016-04-13 DOI:10.1515/bglass-2016-0004
Susanne Heid, P. Stoessel, T. Tauböck, W. Stark, M. Zehnder, D. Mohn
{"title":"将微粒生物活性玻璃掺入牙根管密封器","authors":"Susanne Heid, P. Stoessel, T. Tauböck, W. Stark, M. Zehnder, D. Mohn","doi":"10.1515/bglass-2016-0004","DOIUrl":null,"url":null,"abstract":"Abstract Flame spray synthesis has opened the possibility to add additional elements to complex materials such as bioactive glasseswhile maintaining nanoparticulate properties. In this study, it was investigated whether a flamesprayed bismuth oxide doped nanometric 45S5 bioactive glass could be incorporated into a commercially available epoxy-resin root canal sealer, and how this compared to a conventional, pure 45S5 micrometric bioactive glass. Effects on radiopacity, microhardness, pH and mineral induction in phosphate buffered saline and simulated body fluid were studied. It was revealed that the radiopaque nanometric bismuth-containing 45S5 bioactive glass reduced radiopacity of the root canal sealer less than a conventional micrometric counterpart. In addition, pH induction and calcium phosphate precipitation were quicker with the nanometric compared to the micrometric material, whilst the micrometric glass displayed a higher alkaline capacity. Both materials apparently bound to the epoxy resin matrix, thus increasing its microhardness after polymerization reaction. Effects were dose-dependent. The investigated radiopaque bioactive glass containing bismuth oxide could be a valuable add-on for current root canal sealers.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0004","citationCount":"22","resultStr":"{\"title\":\"Incorporation of particulate bioactive glasses into a dental root canal sealer\",\"authors\":\"Susanne Heid, P. Stoessel, T. Tauböck, W. Stark, M. Zehnder, D. Mohn\",\"doi\":\"10.1515/bglass-2016-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Flame spray synthesis has opened the possibility to add additional elements to complex materials such as bioactive glasseswhile maintaining nanoparticulate properties. In this study, it was investigated whether a flamesprayed bismuth oxide doped nanometric 45S5 bioactive glass could be incorporated into a commercially available epoxy-resin root canal sealer, and how this compared to a conventional, pure 45S5 micrometric bioactive glass. Effects on radiopacity, microhardness, pH and mineral induction in phosphate buffered saline and simulated body fluid were studied. It was revealed that the radiopaque nanometric bismuth-containing 45S5 bioactive glass reduced radiopacity of the root canal sealer less than a conventional micrometric counterpart. In addition, pH induction and calcium phosphate precipitation were quicker with the nanometric compared to the micrometric material, whilst the micrometric glass displayed a higher alkaline capacity. Both materials apparently bound to the epoxy resin matrix, thus increasing its microhardness after polymerization reaction. Effects were dose-dependent. The investigated radiopaque bioactive glass containing bismuth oxide could be a valuable add-on for current root canal sealers.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2016-0004\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2016-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2016-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 22

摘要

摘要:火焰喷射合成开辟了在保持纳米颗粒特性的同时向复杂材料(如生物活性玻璃)添加额外元素的可能性。在这项研究中,研究人员研究了一种火焰喷射氧化铋掺杂的纳米45S5生物活性玻璃是否可以加入到市售的环氧树脂根管密封剂中,并将其与传统的纯45S5微米生物活性玻璃进行了比较。研究了磷酸盐缓冲盐水和模拟体液对放射线透明度、显微硬度、pH值和矿物诱导的影响。结果表明,纳米级含铋45S5生物活性玻璃比传统的微米级玻璃更能降低根管密封剂的不透光性。此外,纳米玻璃的pH诱导和磷酸钙沉淀速度比微米玻璃快,而微米玻璃的碱性容量更高。聚合反应后,两种材料均与环氧树脂基体明显结合,从而提高了其显微硬度。效果是剂量依赖性的。所研究的含氧化铋的不透射线生物活性玻璃可作为当前根管密封剂的一种有价值的附加材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporation of particulate bioactive glasses into a dental root canal sealer
Abstract Flame spray synthesis has opened the possibility to add additional elements to complex materials such as bioactive glasseswhile maintaining nanoparticulate properties. In this study, it was investigated whether a flamesprayed bismuth oxide doped nanometric 45S5 bioactive glass could be incorporated into a commercially available epoxy-resin root canal sealer, and how this compared to a conventional, pure 45S5 micrometric bioactive glass. Effects on radiopacity, microhardness, pH and mineral induction in phosphate buffered saline and simulated body fluid were studied. It was revealed that the radiopaque nanometric bismuth-containing 45S5 bioactive glass reduced radiopacity of the root canal sealer less than a conventional micrometric counterpart. In addition, pH induction and calcium phosphate precipitation were quicker with the nanometric compared to the micrometric material, whilst the micrometric glass displayed a higher alkaline capacity. Both materials apparently bound to the epoxy resin matrix, thus increasing its microhardness after polymerization reaction. Effects were dose-dependent. The investigated radiopaque bioactive glass containing bismuth oxide could be a valuable add-on for current root canal sealers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1