掺银磷酸盐生物活性玻璃:热、结构和体外溶解性能

Q1 Materials Science Biomedical Glasses Pub Date : 2016-01-28 DOI:10.1515/bglass-2016-0005
Ambuj Mishra, J. Rocherullé, J. Massera
{"title":"掺银磷酸盐生物活性玻璃:热、结构和体外溶解性能","authors":"Ambuj Mishra, J. Rocherullé, J. Massera","doi":"10.1515/bglass-2016-0005","DOIUrl":null,"url":null,"abstract":"Abstract Ag doped-bioactive phosphate glasses were processed by traditional melt quenching technique with the concentration of Ag2O ranging from 0 to 5 mol%. The Ag doping led to the depolymerization of the phosphate networkwhich is accompanied by a decrease in the glass transition temperature. The processing window represented by ∆T (∆T=Tx-Tg) exhibited a maximum for glasses containing 2-3 mol% of Ag2O. An increase in Ag content induced an increase in the glass dissolution rate. The precipitation of a Sr-CaP layer at the surface of the glass particulates was found to occur at shorter immersion time for the Ag containing glasses. The congruent dissolution and wide processing window of these Ag containing glasses may be of great interest for scaffold manufacturing from sintering of glass powders with antimicrobial properties.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0005","citationCount":"20","resultStr":"{\"title\":\"Ag-doped phosphate bioactive glasses: thermal, structural and in-vitro dissolution properties\",\"authors\":\"Ambuj Mishra, J. Rocherullé, J. Massera\",\"doi\":\"10.1515/bglass-2016-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ag doped-bioactive phosphate glasses were processed by traditional melt quenching technique with the concentration of Ag2O ranging from 0 to 5 mol%. The Ag doping led to the depolymerization of the phosphate networkwhich is accompanied by a decrease in the glass transition temperature. The processing window represented by ∆T (∆T=Tx-Tg) exhibited a maximum for glasses containing 2-3 mol% of Ag2O. An increase in Ag content induced an increase in the glass dissolution rate. The precipitation of a Sr-CaP layer at the surface of the glass particulates was found to occur at shorter immersion time for the Ag containing glasses. The congruent dissolution and wide processing window of these Ag containing glasses may be of great interest for scaffold manufacturing from sintering of glass powders with antimicrobial properties.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2016-0005\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2016-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2016-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 20

摘要

摘要采用传统的熔体淬火工艺,在Ag2O浓度为0 ~ 5 mol%的条件下制备了Ag掺杂生物活性磷酸盐玻璃。Ag掺杂导致磷酸盐网络的解聚,并伴随着玻璃化转变温度的降低。以∆T(∆T=Tx-Tg)表示的处理窗口在含有2-3 mol% Ag2O的玻璃中表现出最大值。Ag含量的增加导致玻璃溶解速率的增加。发现含银玻璃在较短的浸泡时间内,在玻璃颗粒表面析出Sr-CaP层。这些含银玻璃的均匀溶解和宽加工窗口可能对具有抗菌性能的玻璃粉烧结制造支架有很大的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ag-doped phosphate bioactive glasses: thermal, structural and in-vitro dissolution properties
Abstract Ag doped-bioactive phosphate glasses were processed by traditional melt quenching technique with the concentration of Ag2O ranging from 0 to 5 mol%. The Ag doping led to the depolymerization of the phosphate networkwhich is accompanied by a decrease in the glass transition temperature. The processing window represented by ∆T (∆T=Tx-Tg) exhibited a maximum for glasses containing 2-3 mol% of Ag2O. An increase in Ag content induced an increase in the glass dissolution rate. The precipitation of a Sr-CaP layer at the surface of the glass particulates was found to occur at shorter immersion time for the Ag containing glasses. The congruent dissolution and wide processing window of these Ag containing glasses may be of great interest for scaffold manufacturing from sintering of glass powders with antimicrobial properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1