Minoru Katō, Yi‐Ying Huang, Mina Matsuo, Yoko Takashina, K. Sasaki, Yasushi Horai, Aya Juni, Shin-ichi Kamijo, K. Saigo, K. Ui-Tei, H. Tei
{"title":"利用基于mir-187前体的siRNA表达构建体,rnai介导小鼠黑素皮质素-4受体的体外和体内敲低","authors":"Minoru Katō, Yi‐Ying Huang, Mina Matsuo, Yoko Takashina, K. Sasaki, Yasushi Horai, Aya Juni, Shin-ichi Kamijo, K. Saigo, K. Ui-Tei, H. Tei","doi":"10.1538/expanim.16-0065","DOIUrl":null,"url":null,"abstract":"RNA interference (RNAi) is a powerful tool for the study of gene function in mammalian systems, including transgenic mice. Here, we report a gene knockdown system based on the human mir-187 precursor. We introduced small interfering RNA (siRNA) sequences against the mouse melanocortin-4 receptor (mMc4r) to alter the targeting of miR-187. The siRNA-expressing cassette was placed under the control of the cytomegalovirus (CMV) early enhancer/chicken β-actin promoter. In vitro, the construct efficiently knocked down the gene expression of a co-transfected mMc4r-expression vector in cultured mammalian cells. Using this construct, we generated a transgenic mouse line which exhibited partial but significant knockdown of mMc4r mRNA in various brain regions. Northern blot analysis detected transgenic expression of mMc4r siRNA in these regions. Furthermore, the transgenic mice fed a normal diet ate 9% more and were 30% heavier than wild-type sibs. They also developed hyperinsulinemia and fatty liver as do mMc4r knockout mice. We determined that this siRNA expression construct based on mir-187 is a practical and useful tool for gene functional studies in vitro as well as in vivo.","PeriodicalId":75961,"journal":{"name":"Jikken dobutsu. Experimental animals","volume":"66 1","pages":"41 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1538/expanim.16-0065","citationCount":"0","resultStr":"{\"title\":\"RNAi-mediated knockdown of mouse melanocortin-4 receptor in vitro and in vivo, using an siRNA expression construct based on the mir-187 precursor\",\"authors\":\"Minoru Katō, Yi‐Ying Huang, Mina Matsuo, Yoko Takashina, K. Sasaki, Yasushi Horai, Aya Juni, Shin-ichi Kamijo, K. Saigo, K. Ui-Tei, H. Tei\",\"doi\":\"10.1538/expanim.16-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA interference (RNAi) is a powerful tool for the study of gene function in mammalian systems, including transgenic mice. Here, we report a gene knockdown system based on the human mir-187 precursor. We introduced small interfering RNA (siRNA) sequences against the mouse melanocortin-4 receptor (mMc4r) to alter the targeting of miR-187. The siRNA-expressing cassette was placed under the control of the cytomegalovirus (CMV) early enhancer/chicken β-actin promoter. In vitro, the construct efficiently knocked down the gene expression of a co-transfected mMc4r-expression vector in cultured mammalian cells. Using this construct, we generated a transgenic mouse line which exhibited partial but significant knockdown of mMc4r mRNA in various brain regions. Northern blot analysis detected transgenic expression of mMc4r siRNA in these regions. Furthermore, the transgenic mice fed a normal diet ate 9% more and were 30% heavier than wild-type sibs. They also developed hyperinsulinemia and fatty liver as do mMc4r knockout mice. We determined that this siRNA expression construct based on mir-187 is a practical and useful tool for gene functional studies in vitro as well as in vivo.\",\"PeriodicalId\":75961,\"journal\":{\"name\":\"Jikken dobutsu. Experimental animals\",\"volume\":\"66 1\",\"pages\":\"41 - 50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1538/expanim.16-0065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jikken dobutsu. Experimental animals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.16-0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jikken dobutsu. Experimental animals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1538/expanim.16-0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RNAi-mediated knockdown of mouse melanocortin-4 receptor in vitro and in vivo, using an siRNA expression construct based on the mir-187 precursor
RNA interference (RNAi) is a powerful tool for the study of gene function in mammalian systems, including transgenic mice. Here, we report a gene knockdown system based on the human mir-187 precursor. We introduced small interfering RNA (siRNA) sequences against the mouse melanocortin-4 receptor (mMc4r) to alter the targeting of miR-187. The siRNA-expressing cassette was placed under the control of the cytomegalovirus (CMV) early enhancer/chicken β-actin promoter. In vitro, the construct efficiently knocked down the gene expression of a co-transfected mMc4r-expression vector in cultured mammalian cells. Using this construct, we generated a transgenic mouse line which exhibited partial but significant knockdown of mMc4r mRNA in various brain regions. Northern blot analysis detected transgenic expression of mMc4r siRNA in these regions. Furthermore, the transgenic mice fed a normal diet ate 9% more and were 30% heavier than wild-type sibs. They also developed hyperinsulinemia and fatty liver as do mMc4r knockout mice. We determined that this siRNA expression construct based on mir-187 is a practical and useful tool for gene functional studies in vitro as well as in vivo.