{"title":"一种新型机器人控制系统模拟医生手术以辅助经皮冠状动脉介入治疗","authors":"Ping Zhang","doi":"10.15212/cvia.2022.0003","DOIUrl":null,"url":null,"abstract":"Objectives: The use of current robotic systems to assist in percutaneous coronary intervention (PCI) fundamentallydiffers from performing conventional PCI. To overcome this problem, we developed a novel master-slave roboticcontrol system to assist in PCI, and evaluated its safety and feasibility in the delivery and manipulation of coronaryguidewires in vitro and in vivo.Methods: The novel robotic assist PCI system is composed of three parts: 1) a master actuator, which imitates thetraditional torque used by surgeons in conventional PCI, 2) a slave actuator, including a guidewire delivery system andforce monitoring equipment, and 3) a local area network based communication system.Results: The experiment was performed in six pigs. Both robotic and manual control completed the operation with no device- or procedure-associated complications. An experienced interventional cardiologist who was a first-time userof the novel robotic PCI system was able to advance the guidewire into a distal branch of a coronary artery within asimilar time to that required with the manual procedure.Conclusion: This early in vivo experiment with the novel robotic assisted PCI control system demonstrated that its feasibility, safety, and procedural effectiveness are comparable to those of manual operation. The novel robotic-assisted PCI control system required significantly less time to learn than other currently available systems.","PeriodicalId":41559,"journal":{"name":"Cardiovascular Innovations and Applications","volume":"93 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Robotic Control System Mimics Doctor’s Operation to Assist Percutaneous Coronary Intervention\",\"authors\":\"Ping Zhang\",\"doi\":\"10.15212/cvia.2022.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: The use of current robotic systems to assist in percutaneous coronary intervention (PCI) fundamentallydiffers from performing conventional PCI. To overcome this problem, we developed a novel master-slave roboticcontrol system to assist in PCI, and evaluated its safety and feasibility in the delivery and manipulation of coronaryguidewires in vitro and in vivo.Methods: The novel robotic assist PCI system is composed of three parts: 1) a master actuator, which imitates thetraditional torque used by surgeons in conventional PCI, 2) a slave actuator, including a guidewire delivery system andforce monitoring equipment, and 3) a local area network based communication system.Results: The experiment was performed in six pigs. Both robotic and manual control completed the operation with no device- or procedure-associated complications. An experienced interventional cardiologist who was a first-time userof the novel robotic PCI system was able to advance the guidewire into a distal branch of a coronary artery within asimilar time to that required with the manual procedure.Conclusion: This early in vivo experiment with the novel robotic assisted PCI control system demonstrated that its feasibility, safety, and procedural effectiveness are comparable to those of manual operation. The novel robotic-assisted PCI control system required significantly less time to learn than other currently available systems.\",\"PeriodicalId\":41559,\"journal\":{\"name\":\"Cardiovascular Innovations and Applications\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Innovations and Applications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15212/cvia.2022.0003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Innovations and Applications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15212/cvia.2022.0003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
A Novel Robotic Control System Mimics Doctor’s Operation to Assist Percutaneous Coronary Intervention
Objectives: The use of current robotic systems to assist in percutaneous coronary intervention (PCI) fundamentallydiffers from performing conventional PCI. To overcome this problem, we developed a novel master-slave roboticcontrol system to assist in PCI, and evaluated its safety and feasibility in the delivery and manipulation of coronaryguidewires in vitro and in vivo.Methods: The novel robotic assist PCI system is composed of three parts: 1) a master actuator, which imitates thetraditional torque used by surgeons in conventional PCI, 2) a slave actuator, including a guidewire delivery system andforce monitoring equipment, and 3) a local area network based communication system.Results: The experiment was performed in six pigs. Both robotic and manual control completed the operation with no device- or procedure-associated complications. An experienced interventional cardiologist who was a first-time userof the novel robotic PCI system was able to advance the guidewire into a distal branch of a coronary artery within asimilar time to that required with the manual procedure.Conclusion: This early in vivo experiment with the novel robotic assisted PCI control system demonstrated that its feasibility, safety, and procedural effectiveness are comparable to those of manual operation. The novel robotic-assisted PCI control system required significantly less time to learn than other currently available systems.