Jamoliddin Razzokov, Sunnatullo Fazliev, M. Yusupov, A. Sharipov, Zukhriddin Ruziev, Sh. I. Mamatkulov
{"title":"突变和二硫键形成对单体细胞红蛋白催化位点的影响:分子水平的洞察","authors":"Jamoliddin Razzokov, Sunnatullo Fazliev, M. Yusupov, A. Sharipov, Zukhriddin Ruziev, Sh. I. Mamatkulov","doi":"10.1615/plasmamed.2021041420","DOIUrl":null,"url":null,"abstract":": Cytoglobin (Cygb) is a recently discovered member of the globin family. Cygb maintains a large apolar cavity with the heme group located in it. The main catalytic activity of Cygb takes place around this heme group, which is also considered as a ligand docking station. Biochemical experiments revealed that Cygb can scavenge reactive oxygen and nitrogen species, such as hydrogen peroxide, nitric oxide, and peroxinitrite, protecting the cell against oxidative and nitrosative stress. However, the effect of mutation, as well as its synergistic effect together with oxidation on scavenging activity of the Cygb, has not yet been studied in detail. Thus, in this research we perform molecular dynamics and docking simulations to study the impact of mutation and oxidation on the Cygb catalytic function. Our simulation results show that the mutation of lysine 80 residue to alanine in Cygb results in an opening of the access to the heme group, thereby increasing its scavenging function. Moreover, the combination of this mutation (i.e., Cygb (L80A) ) with the oxidation [namely, the disulfide bond formation in Cygb (i.e., Cygb S-S )] induces the complex conformational changes in its structure. As a result, these changes lead to even more opening of the access to the heme group, which in turn enhances the scavenging activity of Cygb to a more extent. The latter can be a hallmark of enhanced enzymatic function of the modified Cygb (i.e., Cygb (L80A) and Cygb S-S ).","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of mutation and disulfide bond formation on the catalytic site of monomeric cytoglobin: a molecular level insight\",\"authors\":\"Jamoliddin Razzokov, Sunnatullo Fazliev, M. Yusupov, A. Sharipov, Zukhriddin Ruziev, Sh. I. Mamatkulov\",\"doi\":\"10.1615/plasmamed.2021041420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cytoglobin (Cygb) is a recently discovered member of the globin family. Cygb maintains a large apolar cavity with the heme group located in it. The main catalytic activity of Cygb takes place around this heme group, which is also considered as a ligand docking station. Biochemical experiments revealed that Cygb can scavenge reactive oxygen and nitrogen species, such as hydrogen peroxide, nitric oxide, and peroxinitrite, protecting the cell against oxidative and nitrosative stress. However, the effect of mutation, as well as its synergistic effect together with oxidation on scavenging activity of the Cygb, has not yet been studied in detail. Thus, in this research we perform molecular dynamics and docking simulations to study the impact of mutation and oxidation on the Cygb catalytic function. Our simulation results show that the mutation of lysine 80 residue to alanine in Cygb results in an opening of the access to the heme group, thereby increasing its scavenging function. Moreover, the combination of this mutation (i.e., Cygb (L80A) ) with the oxidation [namely, the disulfide bond formation in Cygb (i.e., Cygb S-S )] induces the complex conformational changes in its structure. As a result, these changes lead to even more opening of the access to the heme group, which in turn enhances the scavenging activity of Cygb to a more extent. The latter can be a hallmark of enhanced enzymatic function of the modified Cygb (i.e., Cygb (L80A) and Cygb S-S ).\",\"PeriodicalId\":53607,\"journal\":{\"name\":\"Plasma Medicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/plasmamed.2021041420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/plasmamed.2021041420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Effect of mutation and disulfide bond formation on the catalytic site of monomeric cytoglobin: a molecular level insight
: Cytoglobin (Cygb) is a recently discovered member of the globin family. Cygb maintains a large apolar cavity with the heme group located in it. The main catalytic activity of Cygb takes place around this heme group, which is also considered as a ligand docking station. Biochemical experiments revealed that Cygb can scavenge reactive oxygen and nitrogen species, such as hydrogen peroxide, nitric oxide, and peroxinitrite, protecting the cell against oxidative and nitrosative stress. However, the effect of mutation, as well as its synergistic effect together with oxidation on scavenging activity of the Cygb, has not yet been studied in detail. Thus, in this research we perform molecular dynamics and docking simulations to study the impact of mutation and oxidation on the Cygb catalytic function. Our simulation results show that the mutation of lysine 80 residue to alanine in Cygb results in an opening of the access to the heme group, thereby increasing its scavenging function. Moreover, the combination of this mutation (i.e., Cygb (L80A) ) with the oxidation [namely, the disulfide bond formation in Cygb (i.e., Cygb S-S )] induces the complex conformational changes in its structure. As a result, these changes lead to even more opening of the access to the heme group, which in turn enhances the scavenging activity of Cygb to a more extent. The latter can be a hallmark of enhanced enzymatic function of the modified Cygb (i.e., Cygb (L80A) and Cygb S-S ).
Plasma MedicinePhysics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍:
Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.