{"title":"用软计算方法模拟天然小溪剪应力分布","authors":"Onur Genç, O. Kisi, M. Ardiclioglu","doi":"10.15233/GFZ.2016.33.11","DOIUrl":null,"url":null,"abstract":"In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) were used to estimate shear stress distribution in streams. The methods were applied to the 145 field data gauged from four different sites on the Sarimsakli and Sosun streams in Turkey. The accuracy of the applied models was compared with the multiple-linear regression (MLR). The results showed that the ANNs and ANFIS models performed better than the MLR model in modeling shear stress distribution. The root mean square errors (RMSE) and mean absolute errors (MAE) of the MLR model were reduced by 47% and 50% using ANFIS model in estimating shear stress distribution in the test period, respectively. It is found that the best ANFIS model with RMSE of 3.85, MAE of 2.85 and determination coefficient (R2) of 0.921 in test period is superior to the MLR model with RMSE of 7.30, MAE of 5.75 and R2 of 0.794 in estimation of shear stress distribution, respectively.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"33 1","pages":"137-156"},"PeriodicalIF":0.9000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling shear stress distribution in natural small streams by soft computing methods\",\"authors\":\"Onur Genç, O. Kisi, M. Ardiclioglu\",\"doi\":\"10.15233/GFZ.2016.33.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) were used to estimate shear stress distribution in streams. The methods were applied to the 145 field data gauged from four different sites on the Sarimsakli and Sosun streams in Turkey. The accuracy of the applied models was compared with the multiple-linear regression (MLR). The results showed that the ANNs and ANFIS models performed better than the MLR model in modeling shear stress distribution. The root mean square errors (RMSE) and mean absolute errors (MAE) of the MLR model were reduced by 47% and 50% using ANFIS model in estimating shear stress distribution in the test period, respectively. It is found that the best ANFIS model with RMSE of 3.85, MAE of 2.85 and determination coefficient (R2) of 0.921 in test period is superior to the MLR model with RMSE of 7.30, MAE of 5.75 and R2 of 0.794 in estimation of shear stress distribution, respectively.\",\"PeriodicalId\":50419,\"journal\":{\"name\":\"Geofizika\",\"volume\":\"33 1\",\"pages\":\"137-156\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizika\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15233/GFZ.2016.33.11\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/GFZ.2016.33.11","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Modeling shear stress distribution in natural small streams by soft computing methods
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) were used to estimate shear stress distribution in streams. The methods were applied to the 145 field data gauged from four different sites on the Sarimsakli and Sosun streams in Turkey. The accuracy of the applied models was compared with the multiple-linear regression (MLR). The results showed that the ANNs and ANFIS models performed better than the MLR model in modeling shear stress distribution. The root mean square errors (RMSE) and mean absolute errors (MAE) of the MLR model were reduced by 47% and 50% using ANFIS model in estimating shear stress distribution in the test period, respectively. It is found that the best ANFIS model with RMSE of 3.85, MAE of 2.85 and determination coefficient (R2) of 0.921 in test period is superior to the MLR model with RMSE of 7.30, MAE of 5.75 and R2 of 0.794 in estimation of shear stress distribution, respectively.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.