D. Mahalakshmi, A. Paul, D. Dutta, M. Ali, V. Dadhwal, R. S. Reddy, C. Jha, J. R. Sharma
{"title":"利用涡通量塔数据估算西孟加拉邦孙德班热带红树林的净地表辐射","authors":"D. Mahalakshmi, A. Paul, D. Dutta, M. Ali, V. Dadhwal, R. S. Reddy, C. Jha, J. R. Sharma","doi":"10.15233/GFZ.2016.33.5","DOIUrl":null,"url":null,"abstract":"In this study, net surface radiation (Rn) was estimated using artificial neural network (ANN) and Linear Model (LM). Then, estimated Rn with both the models (ANN and LM) were compared with measured Rn from eddy covariance (EC) flux tower. The routinely measured meteorological variables namely air temperature, relative humidity and wind velocity were used as input to the ANN and global solar radiation as input to the LM. All the input data are from the EC flux tower. Sensitivity analysis of ANN with all the meteorological variables is carried out by excluding one by one meteorological variable. The validation results demonstrated that, ANN and LM estimated Rn values were in good agreement with the measured values, with root mean square error (RMSE) varying between 21.63 W/m2 and 34.94 W/m2, mean absolute error (MAE) between 17.93 W/m2 and 22.28 W/m2 and coefficient of residual mass (CRM) between –0.007 and –0.04 respectively. Further we have computed modelling efficiency (0.97 for ANN and 0.99 for LM) and coefficient of determination (R2 = 0.97 for ANN and 0.99 for LM) for both the models. Even though both the models could predict Rn successfully, ANN was better in terms of minimum number of routinely measured meteorological variables as input. The results of the ANN sensitivity analysis indicated that air temperatuere is the more important parameter followed by relative humidity, wind speed and wind direction.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"1 1","pages":"1-14"},"PeriodicalIF":0.9000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of net surface radiation using eddy flux tower data over a tropical mangrove forest of Sundarban, West Bengal\",\"authors\":\"D. Mahalakshmi, A. Paul, D. Dutta, M. Ali, V. Dadhwal, R. S. Reddy, C. Jha, J. R. Sharma\",\"doi\":\"10.15233/GFZ.2016.33.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, net surface radiation (Rn) was estimated using artificial neural network (ANN) and Linear Model (LM). Then, estimated Rn with both the models (ANN and LM) were compared with measured Rn from eddy covariance (EC) flux tower. The routinely measured meteorological variables namely air temperature, relative humidity and wind velocity were used as input to the ANN and global solar radiation as input to the LM. All the input data are from the EC flux tower. Sensitivity analysis of ANN with all the meteorological variables is carried out by excluding one by one meteorological variable. The validation results demonstrated that, ANN and LM estimated Rn values were in good agreement with the measured values, with root mean square error (RMSE) varying between 21.63 W/m2 and 34.94 W/m2, mean absolute error (MAE) between 17.93 W/m2 and 22.28 W/m2 and coefficient of residual mass (CRM) between –0.007 and –0.04 respectively. Further we have computed modelling efficiency (0.97 for ANN and 0.99 for LM) and coefficient of determination (R2 = 0.97 for ANN and 0.99 for LM) for both the models. Even though both the models could predict Rn successfully, ANN was better in terms of minimum number of routinely measured meteorological variables as input. The results of the ANN sensitivity analysis indicated that air temperatuere is the more important parameter followed by relative humidity, wind speed and wind direction.\",\"PeriodicalId\":50419,\"journal\":{\"name\":\"Geofizika\",\"volume\":\"1 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizika\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15233/GFZ.2016.33.5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/GFZ.2016.33.5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Estimation of net surface radiation using eddy flux tower data over a tropical mangrove forest of Sundarban, West Bengal
In this study, net surface radiation (Rn) was estimated using artificial neural network (ANN) and Linear Model (LM). Then, estimated Rn with both the models (ANN and LM) were compared with measured Rn from eddy covariance (EC) flux tower. The routinely measured meteorological variables namely air temperature, relative humidity and wind velocity were used as input to the ANN and global solar radiation as input to the LM. All the input data are from the EC flux tower. Sensitivity analysis of ANN with all the meteorological variables is carried out by excluding one by one meteorological variable. The validation results demonstrated that, ANN and LM estimated Rn values were in good agreement with the measured values, with root mean square error (RMSE) varying between 21.63 W/m2 and 34.94 W/m2, mean absolute error (MAE) between 17.93 W/m2 and 22.28 W/m2 and coefficient of residual mass (CRM) between –0.007 and –0.04 respectively. Further we have computed modelling efficiency (0.97 for ANN and 0.99 for LM) and coefficient of determination (R2 = 0.97 for ANN and 0.99 for LM) for both the models. Even though both the models could predict Rn successfully, ANN was better in terms of minimum number of routinely measured meteorological variables as input. The results of the ANN sensitivity analysis indicated that air temperatuere is the more important parameter followed by relative humidity, wind speed and wind direction.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.