成本效益高,集成体外模型心脏MRI。

Shivaprasad Chikop, A. S. Konar, N. Reddy, Nithin N. Vajuvalli, Darshan Keelara, Ashwini Kumnoor, S. Raghuraman, R. Venkatesan, S. Geethanath
{"title":"成本效益高,集成体外模型心脏MRI。","authors":"Shivaprasad Chikop, A. S. Konar, N. Reddy, Nithin N. Vajuvalli, Darshan Keelara, Ashwini Kumnoor, S. Raghuraman, R. Venkatesan, S. Geethanath","doi":"10.1615/critrevbiomedeng.2021035094","DOIUrl":null,"url":null,"abstract":"To provide lab scale in vitro phantom solutions for cardiac MR (CMR) studies that can be used for imaging structure and function as well as calorimetric measurements. The phantoms were purposed to accept user inputs such as beats per minute (BPM) and flow rate. We developed two generations of phantoms. The first phantom was developed using poly vinyl alcohol driven by a mechanical setup. The second was a 3D-printed phantom controlled through a user interface (UI) and a peristaltic pump. These phantoms were scanned for the characteristics mentioned above, which were qualitatively and quantitatively assessed through postprocessing of CMR images and compared with in vivo data.","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"44 1","pages":"7-16"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective, Integrated In Vitro Phantoms for Cardiac MRI.\",\"authors\":\"Shivaprasad Chikop, A. S. Konar, N. Reddy, Nithin N. Vajuvalli, Darshan Keelara, Ashwini Kumnoor, S. Raghuraman, R. Venkatesan, S. Geethanath\",\"doi\":\"10.1615/critrevbiomedeng.2021035094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide lab scale in vitro phantom solutions for cardiac MR (CMR) studies that can be used for imaging structure and function as well as calorimetric measurements. The phantoms were purposed to accept user inputs such as beats per minute (BPM) and flow rate. We developed two generations of phantoms. The first phantom was developed using poly vinyl alcohol driven by a mechanical setup. The second was a 3D-printed phantom controlled through a user interface (UI) and a peristaltic pump. These phantoms were scanned for the characteristics mentioned above, which were qualitatively and quantitatively assessed through postprocessing of CMR images and compared with in vivo data.\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"7-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/critrevbiomedeng.2021035094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/critrevbiomedeng.2021035094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为心脏MR (CMR)研究提供实验室规模的体外模型解决方案,可用于成像结构和功能以及量热测量。这些幻影被用来接受用户输入,比如每分钟心跳数(BPM)和流速。我们开发了两代幽灵。第一个幻影是用机械装置驱动的聚乙烯醇开发的。第二个是通过用户界面(UI)和蠕动泵控制的3d打印幻影。扫描这些幻影以获得上述特征,通过CMR图像的后处理对这些特征进行定性和定量评估,并与体内数据进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-Effective, Integrated In Vitro Phantoms for Cardiac MRI.
To provide lab scale in vitro phantom solutions for cardiac MR (CMR) studies that can be used for imaging structure and function as well as calorimetric measurements. The phantoms were purposed to accept user inputs such as beats per minute (BPM) and flow rate. We developed two generations of phantoms. The first phantom was developed using poly vinyl alcohol driven by a mechanical setup. The second was a 3D-printed phantom controlled through a user interface (UI) and a peristaltic pump. These phantoms were scanned for the characteristics mentioned above, which were qualitatively and quantitatively assessed through postprocessing of CMR images and compared with in vivo data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biomedical Engineering
Critical Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
1.80
自引率
0.00%
发文量
25
期刊介绍: Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.
期刊最新文献
A Review on Implantable Neuroelectrodes. Using Fuzzy Mathematical Model in the Differential Diagnosis of Pancreatic Lesions Using Ultrasonography and Echographic Texture Analysis. Has Machine Learning Enhanced the Diagnosis of Autism Spectrum Disorder? Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases. Engineers in Medicine: Foster Innovation by Traversing Boundaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1