{"title":"低雷诺数下翼型几何形状对气动性能影响的研究","authors":"A. Alsahlani","doi":"10.18178/ijmerr.12.2.99-106","DOIUrl":null,"url":null,"abstract":"— The aerodynamic performance of airfoils has been studied in several studies; however, the performance is highly relying on the airfoil geometry and the flow characteristics such as the flow type (laminar or turbulent) and Reynolds number. This paper focuses on understanding the aerodynamic performance of airfoils in a low-speed environment (low Reynolds number) versus the airfoil geometry. This paper would be a guide to the airfoil design and optimization processes toward the design target under similar flow conditions. Therefore, several parameters of the airfoil geometry, such as maximum thickness, maximum camber, their location, and reflex angle were studied in a low Reynolds number range from 0.3×10 6 to 0.8×10 6 . Three airfoil parameterizations, NACA 4-digit, PARSEC, and Bezier curve, were utilised to generate the airfoil coordinates for different studied parameters. A two-dimensional aerodynamic solver, XFOIL, was used to evaluate the aerodynamic performance of the airfoils. The results show that varying the airfoil geometry results in a noticeable change in the lift, drag, and moment coefficients. Also, as expected, increasing the Reynolds number has resulted in a good performance.","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Impacts of Airfoil Geometry on the Aerodynamic Performance at Low Reynolds Number\",\"authors\":\"A. Alsahlani\",\"doi\":\"10.18178/ijmerr.12.2.99-106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— The aerodynamic performance of airfoils has been studied in several studies; however, the performance is highly relying on the airfoil geometry and the flow characteristics such as the flow type (laminar or turbulent) and Reynolds number. This paper focuses on understanding the aerodynamic performance of airfoils in a low-speed environment (low Reynolds number) versus the airfoil geometry. This paper would be a guide to the airfoil design and optimization processes toward the design target under similar flow conditions. Therefore, several parameters of the airfoil geometry, such as maximum thickness, maximum camber, their location, and reflex angle were studied in a low Reynolds number range from 0.3×10 6 to 0.8×10 6 . Three airfoil parameterizations, NACA 4-digit, PARSEC, and Bezier curve, were utilised to generate the airfoil coordinates for different studied parameters. A two-dimensional aerodynamic solver, XFOIL, was used to evaluate the aerodynamic performance of the airfoils. The results show that varying the airfoil geometry results in a noticeable change in the lift, drag, and moment coefficients. Also, as expected, increasing the Reynolds number has resulted in a good performance.\",\"PeriodicalId\":37784,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Robotics Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijmerr.12.2.99-106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.12.2.99-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Study of Impacts of Airfoil Geometry on the Aerodynamic Performance at Low Reynolds Number
— The aerodynamic performance of airfoils has been studied in several studies; however, the performance is highly relying on the airfoil geometry and the flow characteristics such as the flow type (laminar or turbulent) and Reynolds number. This paper focuses on understanding the aerodynamic performance of airfoils in a low-speed environment (low Reynolds number) versus the airfoil geometry. This paper would be a guide to the airfoil design and optimization processes toward the design target under similar flow conditions. Therefore, several parameters of the airfoil geometry, such as maximum thickness, maximum camber, their location, and reflex angle were studied in a low Reynolds number range from 0.3×10 6 to 0.8×10 6 . Three airfoil parameterizations, NACA 4-digit, PARSEC, and Bezier curve, were utilised to generate the airfoil coordinates for different studied parameters. A two-dimensional aerodynamic solver, XFOIL, was used to evaluate the aerodynamic performance of the airfoils. The results show that varying the airfoil geometry results in a noticeable change in the lift, drag, and moment coefficients. Also, as expected, increasing the Reynolds number has resulted in a good performance.
期刊介绍:
International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.