使用监督机器学习技术对亚马逊产品评论进行情感分析

Naveed Sultan
{"title":"使用监督机器学习技术对亚马逊产品评论进行情感分析","authors":"Naveed Sultan","doi":"10.17977/um018v5i12022p101-108","DOIUrl":null,"url":null,"abstract":"Today, everything is sold online, and many individuals can post reviews about different products to show feedback. Serves as feedback for businesses regarding buyer reviews, performance, product quality, and seller service. The project focuses on buyer opinions based on Mobile Phone reviews. Sentiment analysis is the function of analyzing all these data, obtaining opinions about these products and services that classify them as positive, negative, or neutral. This insight can help companies improve their products and help potential buyers make the right decisions. Once the preprocessing is classified on a trained dataset, these reviews must be preprocessed to remove unwanted data such as stop words, verbs, pos tagging, punctuation, and attachments. Many techniques are present to perform such tasks, but in this article, we will use a model that will use different inspection machine techniques.","PeriodicalId":52868,"journal":{"name":"Knowledge Engineering and Data Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sentiment Analysis of Amazon Product Reviews using Supervised Machine Learning Techniques\",\"authors\":\"Naveed Sultan\",\"doi\":\"10.17977/um018v5i12022p101-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, everything is sold online, and many individuals can post reviews about different products to show feedback. Serves as feedback for businesses regarding buyer reviews, performance, product quality, and seller service. The project focuses on buyer opinions based on Mobile Phone reviews. Sentiment analysis is the function of analyzing all these data, obtaining opinions about these products and services that classify them as positive, negative, or neutral. This insight can help companies improve their products and help potential buyers make the right decisions. Once the preprocessing is classified on a trained dataset, these reviews must be preprocessed to remove unwanted data such as stop words, verbs, pos tagging, punctuation, and attachments. Many techniques are present to perform such tasks, but in this article, we will use a model that will use different inspection machine techniques.\",\"PeriodicalId\":52868,\"journal\":{\"name\":\"Knowledge Engineering and Data Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge Engineering and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17977/um018v5i12022p101-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Engineering and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17977/um018v5i12022p101-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

今天,所有的东西都在网上销售,许多人可以发布关于不同产品的评论来显示反馈。为企业提供关于买方评论、性能、产品质量和卖方服务的反馈。该项目侧重于基于手机评论的买家意见。情感分析是分析所有这些数据的功能,获得对这些产品和服务的意见,将其分类为积极,消极或中性。这种洞察力可以帮助公司改进产品,并帮助潜在买家做出正确的决定。在训练数据集上对预处理进行分类后,必须对这些评论进行预处理,以删除不需要的数据,如停止词、动词、词性标注、标点符号和附件。目前有许多技术可以执行此类任务,但在本文中,我们将使用一个使用不同检测机技术的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment Analysis of Amazon Product Reviews using Supervised Machine Learning Techniques
Today, everything is sold online, and many individuals can post reviews about different products to show feedback. Serves as feedback for businesses regarding buyer reviews, performance, product quality, and seller service. The project focuses on buyer opinions based on Mobile Phone reviews. Sentiment analysis is the function of analyzing all these data, obtaining opinions about these products and services that classify them as positive, negative, or neutral. This insight can help companies improve their products and help potential buyers make the right decisions. Once the preprocessing is classified on a trained dataset, these reviews must be preprocessed to remove unwanted data such as stop words, verbs, pos tagging, punctuation, and attachments. Many techniques are present to perform such tasks, but in this article, we will use a model that will use different inspection machine techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
4
审稿时长
8 weeks
期刊最新文献
Optimizing Random Forest Algorithm to Classify Player's Memorisation via In-game Data Long-Term Traffic Prediction Based on Stacked GCN Model Round-Robin Algorithm in Load Balancing for National Data Centers K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups Maximum Marginal Relevance and Vector Space Model for Summarizing Students' Final Project Abstracts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1