{"title":"纳米混合润滑油提高高速减速箱性能的实验研究","authors":"Isai Dharma Rao, C. Prasad, K. Santarao","doi":"10.18311/JSST/2018/16222","DOIUrl":null,"url":null,"abstract":"The sliding motion between worm and worm wheel is the inherent factor that makes the worm and worm wheel drives less efficient among all the gear drives. Efficiency of these gears varies between 40 to 90%. They need good lubricants, which has high heat dissipation capacity and low coefficient of friction for improving the efficiency. The lubricants considered in the current investigation play a significant role in decreasing the power losses in gearbox besides the geometry of the gears. Nano blended lubricants are found to have efficient tribological and thermal physical properties such as, less frictional coefficient and high heat transfer coefficient. Al 2 O 3 Nano particles of 30 nm size dispersed in SAE 140 mineral oil at different volume fractions resulted decrease in frictional coefficient and found varying from 0.1 to 0.5% nano particle volume fractions. Further, heat transfer coefficient is enhanced by 46.35% for volume fraction of 0.5% and also temperature rise of nano blended lubricant was found to be less than that of base lubricant. The overall efficiency of the selected gearbox with which the experimentation has been done was found to be increased with usage of nano blended lubricant. The performance of the gearbox using nano lubricant at 0.5 volume percent is found improved by 4.85 and 7.86% at operating temperatures 35 and 60 o C, respectively compared to the performance of the gearbox using base lubricant.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation to Enhance the Performance of High Speed Reduction Gearbox using Nano Blended Lubricants\",\"authors\":\"Isai Dharma Rao, C. Prasad, K. Santarao\",\"doi\":\"10.18311/JSST/2018/16222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sliding motion between worm and worm wheel is the inherent factor that makes the worm and worm wheel drives less efficient among all the gear drives. Efficiency of these gears varies between 40 to 90%. They need good lubricants, which has high heat dissipation capacity and low coefficient of friction for improving the efficiency. The lubricants considered in the current investigation play a significant role in decreasing the power losses in gearbox besides the geometry of the gears. Nano blended lubricants are found to have efficient tribological and thermal physical properties such as, less frictional coefficient and high heat transfer coefficient. Al 2 O 3 Nano particles of 30 nm size dispersed in SAE 140 mineral oil at different volume fractions resulted decrease in frictional coefficient and found varying from 0.1 to 0.5% nano particle volume fractions. Further, heat transfer coefficient is enhanced by 46.35% for volume fraction of 0.5% and also temperature rise of nano blended lubricant was found to be less than that of base lubricant. The overall efficiency of the selected gearbox with which the experimentation has been done was found to be increased with usage of nano blended lubricant. The performance of the gearbox using nano lubricant at 0.5 volume percent is found improved by 4.85 and 7.86% at operating temperatures 35 and 60 o C, respectively compared to the performance of the gearbox using base lubricant.\",\"PeriodicalId\":17031,\"journal\":{\"name\":\"Journal of Surface Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JSST/2018/16222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2018/16222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Experimental Investigation to Enhance the Performance of High Speed Reduction Gearbox using Nano Blended Lubricants
The sliding motion between worm and worm wheel is the inherent factor that makes the worm and worm wheel drives less efficient among all the gear drives. Efficiency of these gears varies between 40 to 90%. They need good lubricants, which has high heat dissipation capacity and low coefficient of friction for improving the efficiency. The lubricants considered in the current investigation play a significant role in decreasing the power losses in gearbox besides the geometry of the gears. Nano blended lubricants are found to have efficient tribological and thermal physical properties such as, less frictional coefficient and high heat transfer coefficient. Al 2 O 3 Nano particles of 30 nm size dispersed in SAE 140 mineral oil at different volume fractions resulted decrease in frictional coefficient and found varying from 0.1 to 0.5% nano particle volume fractions. Further, heat transfer coefficient is enhanced by 46.35% for volume fraction of 0.5% and also temperature rise of nano blended lubricant was found to be less than that of base lubricant. The overall efficiency of the selected gearbox with which the experimentation has been done was found to be increased with usage of nano blended lubricant. The performance of the gearbox using nano lubricant at 0.5 volume percent is found improved by 4.85 and 7.86% at operating temperatures 35 and 60 o C, respectively compared to the performance of the gearbox using base lubricant.
期刊介绍:
The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction