{"title":"部分封装复合柱的粘结试验","authors":"M. Pecce","doi":"10.18057/ijasc.2010.6.4.5","DOIUrl":null,"url":null,"abstract":"This paper deals with bond behaviour at the steel-concrete interface of partially encased composite columns. The topic is especially interesting to determine the stress transfer between the two materials at sections where composite structural elements are connected, such as in a beam-column joint, and to ensure a short transfer length to attain the strength of the composite section. The few experimental tests in the technical literature usually concern other types of composite columns. The Authors therefore designed and carried out experimental bond tests to investigate the transfer mechanism and ascertain the reliability of some code provisions (Eurocode 4 [5]; New Italian Code [8]) concerning the design value of bond strength for partially encased columns. A suitable test set-up was designed to measure the shear stresses transferred to the steel profile and the slip between the two materials, allowing compression or tension to be applied to concrete according to monotonic or cyclic load history. The test results give interesting information about the bond stress-slip relationship and bond strength; the cyclic tests highlight the effect of seismic action and indicate considerable degradation of strength and stiffness.","PeriodicalId":56332,"journal":{"name":"Advanced Steel Construction","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bond tests of partially encased composite columns\",\"authors\":\"M. Pecce\",\"doi\":\"10.18057/ijasc.2010.6.4.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with bond behaviour at the steel-concrete interface of partially encased composite columns. The topic is especially interesting to determine the stress transfer between the two materials at sections where composite structural elements are connected, such as in a beam-column joint, and to ensure a short transfer length to attain the strength of the composite section. The few experimental tests in the technical literature usually concern other types of composite columns. The Authors therefore designed and carried out experimental bond tests to investigate the transfer mechanism and ascertain the reliability of some code provisions (Eurocode 4 [5]; New Italian Code [8]) concerning the design value of bond strength for partially encased columns. A suitable test set-up was designed to measure the shear stresses transferred to the steel profile and the slip between the two materials, allowing compression or tension to be applied to concrete according to monotonic or cyclic load history. The test results give interesting information about the bond stress-slip relationship and bond strength; the cyclic tests highlight the effect of seismic action and indicate considerable degradation of strength and stiffness.\",\"PeriodicalId\":56332,\"journal\":{\"name\":\"Advanced Steel Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Steel Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18057/ijasc.2010.6.4.5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Steel Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18057/ijasc.2010.6.4.5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
This paper deals with bond behaviour at the steel-concrete interface of partially encased composite columns. The topic is especially interesting to determine the stress transfer between the two materials at sections where composite structural elements are connected, such as in a beam-column joint, and to ensure a short transfer length to attain the strength of the composite section. The few experimental tests in the technical literature usually concern other types of composite columns. The Authors therefore designed and carried out experimental bond tests to investigate the transfer mechanism and ascertain the reliability of some code provisions (Eurocode 4 [5]; New Italian Code [8]) concerning the design value of bond strength for partially encased columns. A suitable test set-up was designed to measure the shear stresses transferred to the steel profile and the slip between the two materials, allowing compression or tension to be applied to concrete according to monotonic or cyclic load history. The test results give interesting information about the bond stress-slip relationship and bond strength; the cyclic tests highlight the effect of seismic action and indicate considerable degradation of strength and stiffness.
期刊介绍:
The International Journal of Advanced Steel Construction provides a platform for the publication and rapid dissemination of original and up-to-date research and technological developments in steel construction, design and analysis. Scope of research papers published in this journal includes but is not limited to theoretical and experimental research on elements, assemblages, systems, material, design philosophy and codification, standards, fabrication, projects of innovative nature and computer techniques. The journal is specifically tailored to channel the exchange of technological know-how between researchers and practitioners. Contributions from all aspects related to the recent developments of advanced steel construction are welcome.