{"title":"复合桥梁剪切滞后效应的局部相互作用分析:设计应用的有限元实现","authors":"F. Gara, G. Ranzi, G. Leoni","doi":"10.18057/ijasc.2011.7.1.1","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical model for the analysis of composite steel-concrete beams with partial interaction to account for the deformability of the shear connection. The proposed approach is capable of capturing the structural response produced by shear-lag effects and by the time-dependent behaviour of the concrete. The versatility of the FE formulation is demonstrated for a wide range of realistic bridge arrangements, e.g. from twin-deck girders to cable-stayed bridges. The accuracy of the approach is validated against the results obtained from more refined models generated with shell elements using commercial finite element software. For each bridge typology considered, both deformations and stresses are calculated to provide greater insight into the structural performance. Particular attention is placed on the determination of the effective width to be used for design purposes and on the stress distribution induced in the concrete component, together with their variation with time due to creep and shrinkage.","PeriodicalId":56332,"journal":{"name":"Advanced Steel Construction","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"PARTIAL INTERACTION ANALYSIS WITH SHEAR-LAG EFFECTS OF COMPOSITE BRIDGES: A FINITE ELEMENT IMPLEMENTATION FOR DESIGN APPLICATIONS\",\"authors\":\"F. Gara, G. Ranzi, G. Leoni\",\"doi\":\"10.18057/ijasc.2011.7.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerical model for the analysis of composite steel-concrete beams with partial interaction to account for the deformability of the shear connection. The proposed approach is capable of capturing the structural response produced by shear-lag effects and by the time-dependent behaviour of the concrete. The versatility of the FE formulation is demonstrated for a wide range of realistic bridge arrangements, e.g. from twin-deck girders to cable-stayed bridges. The accuracy of the approach is validated against the results obtained from more refined models generated with shell elements using commercial finite element software. For each bridge typology considered, both deformations and stresses are calculated to provide greater insight into the structural performance. Particular attention is placed on the determination of the effective width to be used for design purposes and on the stress distribution induced in the concrete component, together with their variation with time due to creep and shrinkage.\",\"PeriodicalId\":56332,\"journal\":{\"name\":\"Advanced Steel Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Steel Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18057/ijasc.2011.7.1.1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Steel Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18057/ijasc.2011.7.1.1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
PARTIAL INTERACTION ANALYSIS WITH SHEAR-LAG EFFECTS OF COMPOSITE BRIDGES: A FINITE ELEMENT IMPLEMENTATION FOR DESIGN APPLICATIONS
This paper presents a numerical model for the analysis of composite steel-concrete beams with partial interaction to account for the deformability of the shear connection. The proposed approach is capable of capturing the structural response produced by shear-lag effects and by the time-dependent behaviour of the concrete. The versatility of the FE formulation is demonstrated for a wide range of realistic bridge arrangements, e.g. from twin-deck girders to cable-stayed bridges. The accuracy of the approach is validated against the results obtained from more refined models generated with shell elements using commercial finite element software. For each bridge typology considered, both deformations and stresses are calculated to provide greater insight into the structural performance. Particular attention is placed on the determination of the effective width to be used for design purposes and on the stress distribution induced in the concrete component, together with their variation with time due to creep and shrinkage.
期刊介绍:
The International Journal of Advanced Steel Construction provides a platform for the publication and rapid dissemination of original and up-to-date research and technological developments in steel construction, design and analysis. Scope of research papers published in this journal includes but is not limited to theoretical and experimental research on elements, assemblages, systems, material, design philosophy and codification, standards, fabrication, projects of innovative nature and computer techniques. The journal is specifically tailored to channel the exchange of technological know-how between researchers and practitioners. Contributions from all aspects related to the recent developments of advanced steel construction are welcome.